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Extreme Wave Height Data Analysis 
Review and Recommendations 
 
Technical Report: B. A. Harper 
Coastal Resource Assessment Section 

 

Introduction 
 
This report summarises the results of a review of 
analysis techniques for the estimation of extreme 
wave heights (either significant or maximum) from 
measured data sets. The Department (previously as 
The Beach Protection Authority and The Department 
of Harbours and Marine) began developing wave data 
monitoring systems in the late 1960’s and now oper-
ates more than a dozen nearshore sites along the 
Queensland coast. A principal reason for wave moni-
toring has been to establish the baseline wave clima-
tology in various regions - an essential adjunct to the 
long term understanding of coastal processes. Rou-
tine wave data analyses to date have been targeted 
towards establishing “normal” criteria related to basic 
wave height and period statistics, seasonal and an-
nual exceedance and sea state persistence. 
 
The data base now available at some specific sites is 
sufficiently long (up to 20 years in some cases) to be-
gin to consider the estimation of “extreme” conditions. 
Extreme wave heights are those not expected to oc-
cur, for example, more than once in several years of 
measurements. At the lower end this might represent 
an annual probability of exceedance less than 0.2 
(once in every five years on average), extending out 
to 0.01 (once in a hundred years on average) or even 
0.001 (once in a thousand years on average) or less. 
The lower the annual probability (or higher the aver-
age return period) the higher the expected wave 
height - provided other physical limits such as wave 
breaking do not form a limit to the process. 
 
The utility of having such information on extreme con-
ditions is related to a need to ensure that very severe 
episodic natural events can be anticipated. Such in-
formation is essential for engineering design, coastal 
planning and the estimation of short term coastal ero-
sion experienced during storm events. Without access 
to long term data, such analyses must be based on 
model hindcasting of past (unwitnessed) weather 
events or conceptual models of possible future events 
based on simulation techniques. Based on recorded 
or hindcast data sets alone, extrapolation of extreme 
events is generally considered acceptably reliable for 
periods up to three times the data period, ie. a 30 year 
data record should provide a reasonable estimate of a 
100 year return period extreme. As the wave height 
increases, its potential for damage increases largely 
in proportion to the square of the height. Accordingly, 
estimates of the probability of extreme values of wave 
height in a region are an essential input to any com-

prehensive assessment of coastal processes and re-
lated coastal works. The longer the period of data 
available, the more accurate will be the prediction of 
extreme conditions. 
 
This report presents an overview of various extreme 
wave height analysis techniques from the literature 
which are presently in common use throughout the 
world and makes specific recommendations as to the 
methods which could be used for the analysis of De-
partmental wave data. The report does not address 
the associated question of estimating the periods of 
extreme waves at this time. 
 

Background to Extreme Value Sta-
tistical Analysis 
 
Although some earlier classical references exist, 
Fisher and Tippet (1928) are generally acknowledged 
as having established the basic theory of extreme 
value statistical analysis. The theory expounds that if 
data are independent and identically-distributed (de-
fined later) then there are three, and only three, as-
ymptotic limiting distributions for their maxima (Muir 
and Shaarawi (1986)) regardless of the parent popu-
lation (eg. normal, Rayleigh, Lognormal etc). These 
are traditionally termed the Fisher-Tippet distributions 
Types I, II and III and are said to represent the “zone 
of attraction” for the specific underlying distributions. 
Jenkinson (1955) later represented these three sepa-
rate extreme value (EV) distributions in a generalised 
manner as the “GEV” and popular usage also in-
cludes the use of the terms EV1, EV2 and EV3. All of 
the above refer to the same distribution forms al-
though there are some differences in nomenclature 
between, say, the traditional statistical literature, hy-
drology literature and meteorological or engineering 
literature.  The FT-I distribution, also sometimes 
termed the double-exponential, was popularised by 
Gumbel (1958) in regard to flood estimation and often 
now bears his name by default. Likewise the FT-II is 
sometimes referred to as the Frechet and the FT-III is 
sometimes (strictly incorrectly) referred to as the 
Weibull because of its almost identical functional simi-
larity to Weibull (1939). Note that the EV1 and EV2 
are two parameter distributions whilst the EV3 has 
three parameters. 
 
Notwithstanding the above theoretical treatment of 
extremes, Galambos (1978) presents the proof (as 
referenced by Carter and Challinor (1981)) that other 
asymptotic extreme distributions can exist if the earlier 
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data pre-conditions are not met but they will not nec-
essarily be those of Fisher-Tippet. For example, the 
GEV assumptions imply regularly sampled data such 
as annual maxima (Muir and Shaarawi (1986)) which 
are often not practically available in sufficient number. 
(It should be noted that “annual”, an essentially arbi-
trary timescale,  is only relevant because it encom-
passes a full seasonal variability and is therefore likely 
to satisfy the independent and equally-distributed cri-
teria.) At this stage the problem can tend to become 
confusing and this has resulted in a number of other 
preferred distributions throughout the literature. 
 
In coastal and ocean engineering practice it will be 
shown that the only additional distributions generally 
considered for these types of analyses are the Log-
normal, the Weibull and a variation sometimes called 
the Poisson-Gumbel. Likewise, the Frechet and EV3 
are rarely used in practice, many years of empirical 
experimentation with wave data having lead the fra-
ternity towards those distributions which generally 
appear to best fit the natural data series - the Gumbel 
and Weibull types. That said, the most broadly held 
consensus would then be that there is no strictly theo-
retical argument for preferring one distribution over 
another and selection is invariably subjective even 
though based on various objectively-posed criteria. 
Some of the issues arising from these facts are pre-
sented in the development which follows. Table 1 
summarises the various candidate distributions com-
monly in use for extreme value analysis. 
 
 
Distribution 

Type 
No. of Pa-
rameters 

Other Names 

FT-I 2 EV1     Gumbel 
FT-II 2 EV2     Frechet 
FT-III 3 EV3    “Weibull” 

Lognormal 2  
Weibull 3  

Poisson-
Gumbel 

3  

Table 1: Commonly Used Extreme Value (EV)  Distributions 

The Essential Issues 
 
The following development broadly follows Mathiesen 
et al (1994) but also draws from many other refer-
ences and also personal experience. 
 
The sequence of events is normally as follows: 
 
• Data selection and sampling 
• Model selection 
• Goodness of fit and confidence limit estimation 
• Establishment of design conditions 

Data Selection 
Selection of the data set is a key element in the esti-
mation of extreme values. A consistency in approach 
is required which must be ultimately underpinned by a 

philosophical statement about the problem to be 
solved. 
 
The time variation of wave height at any location is a 
non-stationary process due to the natural progression 
of storm systems, normally on a seasonal basis, 
which might influence height, direction, persistence 
etc. In shallow waters, wave height may be limited by 
breaking. All of these factors can potentially interfere 
with the necessary assumptions for extreme value 
analysis, which are discussed below. 
 
1. Data Independence 
 
Samples must be independently occurring such that 
only the one peak condition from a single storm event 
can be used. The “traditional” method of only select-
ing annual maximum series is one philosophical level 
implying independence (neglecting the effects of 
longer term weather cycles such as El Nino etc). At 
the other extreme, use of a total data set of hourly 
sampled data produces many related near-peak 
events which are more likely to follow the Rayleigh 
distribution rather than an asymptotic limit assumed 
for EV analysis. It also follows that data sets cannot 
be combined unless they are independent samples 
from the same population. Hence, data from two 
nearby wave buoys would normally be separately 
analysed or else a composite non-overlapping (gap 
filled) data set formed. Data from two sparsely located 
buoys could arguably be combined to produce a 
“longer” record if they independently sample events 
from the same ocean basin, for example, and the goal 
is to derive a statistic applicable to the basin as a 
whole. 
 
The inclusion of all independent but not necessarily 
annual maxima data in the analysis is called use of a 
partial duration series. Selection of the independent 
data set can be assisted by computing the auto-
correlation for the full data time series using a number 
of time lags, eg. 6, 12, 18, 24h. Selecting a time inter-
val for “independence” can then be based on the 
shortest lag having a relatively low correlation level 
(eg. < 0.5). In practice, this is likely to vary in the 
range of 2 to 5 days, depending on the particular cli-
matology of the area, as represented by the typical 
time of passage of high and low pressure cells. Hav-
ing selected the lag as a suitable data window inter-
val, the approach is normally then to also select a 
threshold for the maxima to ensure very common 
wave heights during periods of relative calm will not 
contaminate and swamp the extreme conditions. Se-
lecting a threshold is also called  data censoring and 
when combined with independent selection the overall 
approach is generally termed the peak over threshold 
method. 
 
Finally, since probability of exceedance is fundamen-
tally related to the passage of time, the average time 
between sampled events must be retained. This is 
normally done by simply recording the number of 
events in the overall period of record. 
 
2. Equally Distributed Data 
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This requirement relates to the homogeneity of the 
data sample. Care must be taken that all data are 
likely to be drawn from the same statistical population. 
If not, then the data must be segregated into either 
seasonal or other climatological populations and the 
analyses then separately posed and solved. It is a 
straightforward matter to recombine a series of sepa-
rate distributions later to give an overall, say, annual 
return period curve for the area. 
 
Typical examples where segregation might be needed 
would be (summer) tropical cyclones versus (winter) 
easterly trough lows etc. In the case of tropical cy-
clones, further discrimination might also be warranted 
on the basis of track in some circumstances. This can 
also be extended to include directional wave analyses 
if a predominant bias occurs in the data set. Where 
known seasonal influences occur but appear equally 
balanced there may not be a need to separate the 
data sets. 
 
The presence of significant gaps in a data set can be 
validly infilled from another nearby source if the cir-
cumstances are appropriate. Failing this, the period of 
the gap must be accounted for in the analysis by ad-
justing the total period of record to suit. 
 
It is clear that a high degree of subjective decision 
making may be needed in many practical situations - 
hence the need for a consistent analysis philosophy. 
 
3. Data Accuracy 
 
Notwithstanding the above considerations, the gen-
eral accuracy of the wave data used in the analysis 
must also be considered. The mixing of spectral and 
non-spectrally derived estimates, for example, could 
have a significant impact on the analysis and chang-
ing individual buoy characteristics, eg. non-directional 
to directional, may have subtle effects. Either way it is 
clearly important to have a good knowledge of the 
long term variability and accuracy of the data set. 
 
One particular aspect which can also directly affect 
the extreme wave height data set is due to the tempo-
ral sampling standards used. If 6 hourly sampling has 
been supplanted in recent times by 3 hourly, for ex-
ample, it would be advisable to investigate the likely 
transfer function between these two base sampling 
intervals and perhaps adjust the earlier data. The dif-
ferences will be due to the local climatology, ie. the 
peakedness of storm hydrographs. Since the aim of 
the exercise is to estimate the exceedance of extreme 
heights it is important to try and ensure that the true 
peak waves in any storm event have been sampled. 
For this reason the highest frequency-sampled data 
set (eg. hourly or less if available) would always be 
used and in any case, some statement about the 
temporal sampling used should accompany the ex-
treme value analysis estimates, eg. “the analysis pro-
vides an estimate of the 3 hourly sampled significant 
wave height”. At a further, finer analysis scale, base 
spectral sampling periods may also have some impact 
on the final peak value selected and this could also be 

investigated if deemed critical to the particular analy-
sis. 
 

Distribution Selection 
The background introduction has already alluded to 
the absence of a clear consensus on this issue. This 
is unavoidably related to the fundamental problem in 
statistics, namely uncertainty about the “true” form of 
the distribution. The FT-I (EV1 or Gumbel) and the 
Weibull have been shown to provide the most consis-
tent matching with field data for waves. This may be 
as a result of  a natural “law” or simply an artefact of 
the particular data sets which have figured in promi-
nent analyses, a result of wave buoy inaccuracies or 
sample aliasing etc.  
 
The forms of the two most popular EV distributions 
are as follows: 
 
The FT-I, EV1 or Gumbel: 
 
 F(x) = exp ( -exp( -(x-a)/b) ) 

- ∞ ≤ x ≤ ∞ 
and the Weibull: 
 
 F(x) = 1 - exp( -( (x-a)/b)k ) 

a < x ≤ ∞ 

where F(x) = Prob[H≥H’] 

 H = sampled wave height 

 H’ = a specific wave height 

and the parameters to be fitted are: 

 a = the location 

 b = the scale 

 k = the shape 

  (sometimes c is used rather than k) 
 
and the so-called reduced variates useful in data plot-
ting and analysis are given by: 
 
Gumbel: -ln[ -ln(F(x) ] 
 
Weibull: (-ln[ 1-F(x) ] )k 
 
 
It is not surprising that the Weibull (with three parame-
ters) will almost always produce a better data match 
than the Gumbel (with two parameters). However, the 
Weibull is more “unstable” because of its third pa-
rameter (the shape). Mathematically, one must as-
sume a priori a value for either the shape or the loca-
tion in order to fit the curve to the data or indeed to 
even plot the data. For this reason, many popular 
methods (eg. Petrauskas and Aagaard (1971) and 
Goda (1988)) choose a selection of shape factors 
which have been found to generally cover the range 
of experience for wave height analyses. Typically, a 
Weibull shape near 1.3 will closely match a Gumbel 
curve for the same data set. However, while the data 
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fits may appear near identical, the extrapolated ex-
treme wave heights at long return periods may be 
significantly different. 
 
Care should also be taken that if an analysis is under-
taken over a finite spatial region having an expected 
variation in climatology (often a consideration for 
ocean basin hindcasts), then philosophically one 
would expect a gradual variation in extreme value pa-
rameters. This is more likely to occur with the two pa-
rameter Gumbel curve than the Weibull and it may be 
wise to clamp the Weibull k value to obtain a consis-
tency and continuity of predictions. 
 
A further theoretical complication arises when a par-
ticular data set is censored by applying a threshold. In 
this case, if the philosophical stance is that the data 
which has been removed do belong to the distribution 
which is to be fitted then an allowance should be 
made for their omission. This necessitates using the 
truncated forms of each distribution (refer Mathiesen 
(1994) for example). If however the philosophical 
stance is that the removed data do not form a part of 
the population to be fitted then they can be ignored, 
subject to adjustment of the inter-arrival parameter 
(see later), and the complete form of the distribution 
used instead. Clearly there is a high degree of subjec-
tivity in this situation. It also begs the question of why 
data would be removed if it is actually deemed to be a 
part of the population. This again reflects the funda-
mental uncertainty of which is the underlying distribu-
tion and the search for the “best fit”. (A personal view 
here is that the mathematical exactness of the trun-
cated forms is swamped by the ultimate subjectivity of 
the selection of the data set.) 
 

Fitting Methods 
 
There are essentially three main methods of fitting 
statistical data to any distribution. These are listed 
below in order of commonly accepted complexity, so-
phistication and accuracy: 
 
1. Method of Moments 
2. Least Squares 
3. Maximum Likelihood 
 
The method of moments involves the matching of the 
mean and standard deviation of the sample data to 
that of the posed distribution. It can be quite adequate 
in situations where the data is (fortuitously) well 
matched to the distribution. Strictly, this method can-
not be used with censored data sets. 
 
The least squares method is the traditional minimisa-
tion of the square of the offsets of a line from a series 
of points. The method therefore requires a series of 
independent probability points upon which to minimise 
the offset to the line. This necessitates assigning a 
probability to each data item to form a pair of datum 
(eg. {H, probability of H}). This is a circular argument 
since ultimately the probability of H is the aim of the 
data fitting exercise. Nevertheless, ranking of the data 
sample is undertaken and slices of probability are al-

located to the ranked position of the sample. How the 
allocation of probability is done will clearly influence 
the ultimate position of the line and debate over the 
“best” way of doing this continues to rage. It is gener-
ally, but not universally, accepted that an unbiased 
estimate of the so-called plotting position is required. 
Accordingly, the Weibull (1939) method (as originally 
used by Gumbel (1958)) is generally discredited and 
many studies have shown its high bias effects. The 
method of Gringorten (1963) is accepted as the pre-
ferred plotting position formula for the Gumbel (FT-I, 
EV1) while Petrauskas and Aagaard (1971) and Goda 
(1988) produced slightly different “unbiased” formula 
for the Weibull distribution. (The reason why there 
could be two different formula for the same distribu-
tion is because each is a simple approximation to a 
complex function which requires integration and so 
subjective opinion plays a part - again.) Once the data 
pairs are selected the method is straightforward in its 
application of linear regression in the reduced variate 
space. 
 
The method of maximum likelihood is generally fa-
voured by statisticians since it does not rely on the 
plotting position, is asymptotically unbiased and also 
efficient ( it produces low variance estimates). It does 
this by constructing a mathematical likelihood function 
which is coupled with the chosen distribution form, 
and the parameters of the distribution are obtained by 
locating the maximum of the function. Opponents of 
this method claim it is biased for small samples (eg. < 
20), too complex to solve and not significantly better 
than the other alternatives. Certainly there are some 
difficulties with the Weibull distribution where the solu-
tion can only be given simultaneously for all three pa-
rameters if k>2.0 (Bury(1975)), which is beyond the 
(empirically) accepted “wave” range of 1 to 2. Accord-
ingly, either k or a is then fixed to allow the optimisa-
tion to proceed on a two parameter basis, a most of-
ten set to a value just below the smallest sample. The 
reasons for avoiding the method still seem somewhat 
dismissive given that it is undoubtedly objective and 
the necessary numerical methods have been widely 
available for the past twenty years. It is also acknowl-
edged that maximum likelihood is the most robust 
method, being much less sensitive to outliers in the 
data than the least squares approach. Unfortunately, 
in order to visualise the data fit, the use of plotting po-
sitions is still required and comparisons of the points 
(especially the outliers) and the fit are inevitable. 
Ironically, the least squares fit is then in the enviable 
position of normally showing the “better” visual fit to 
the data. 

Goodness of Fit Tests 
Since the choice of distribution is almost always 
somewhat subjective, the question remains as to 
whether it was a “good” choice. The usual approach is 
either to adopt a particular distribution as a standard 
(eg. Gumbel) and compare the fit against some crite-
ria, or, to select a range of distributions to fit the data 
and pick the “best” from that set. 
 
The use of Chi-squared or correlation coefficient test-
ing is normally considered too insensitive for this task. 
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Visual comparisons are essential in aiding compre-
hension of the fit and noting the presence of outliers 
but not always quantitatively useful for discriminating 
goodness-of-fit between one or more possible distri-
butions.  
 
The quantile-quantile (Q-Q) plot is often recom-
mended whereby the computed and observed wave 
heights are cross-plotted with the expectation of a 
straight line occurring. This method also allows the 
overplotting of different distributions which is not nor-
mally possible for the Weibull because k appears in 
the reduced variate term. 
 
Beyond Q-Q is the realm of distribution-free tests 
such as the Kolmogorov-Smirnoff and Anderson-
Darling (both favouring the middle of the distribution) 
and the Cramer-Von Mises (said to favour the tail or 
low probability region). All these tests perform best for 
large data sets. 
 
Monte Carlo methods are also often used for deter-
mining goodness of fit (eg. Petrauskas and Aagaard 
(1971), Goda (1988)). The technique is to randomly 
generate a large number of synthetic data sets based 
on the fitted distribution and compare, say, the mean 
squared deviation (MSD) of these points chosen from 
the distribution in each case with the original data set 
MSD. If the original data MSD is shown to be better 
than 50% of the randomly chosen samples then it is 
accepted as a “good” fit. Ranking of alternate distribu-
tions is then similarly applied. 
 
In recent years The Bootstrap method (Effron (1979)) 
has become more widely used and can be thought of 
as a variation on the direct Monte Carlo method. The 
Bootstrap deals with the actual sample data set rather 
than the assigned form of distribution and can there-
fore claim to be non-parametric. 

Confidence Limits 
From a practical design perspective it is always desir-
able to have some indication as to the range of values 
a particular return period wave height estimate might 
take, on the assumption that the stated value repre-
sents a mean position. While the alternative question 
is “how wide is the return period estimate of a specific 
wave height likely to be”, this rarely seems to be con-
sidered but is equally valid. 
 
The confidence limit surrounding an estimate is nor-
mally based on the assumption that the chosen distri-
bution type is indeed the true distribution type, ie. as 
derived from the goodness of fit test. The problem 
then to be considered, given that the data record is 
not infinitely long, is the accuracy in estimation of the 
distribution parameters themselves. Put another way, 
if the data set were much longer (such as being based 
on another 10 years of records) is it likely that the fit-
ted distribution parameters would be very different? If 
the distribution parameters might indeed be different 
then this translates into an uncertainty surrounding 
any particular estimate, such as the 100 yr return pe-
riod wave height. 
 

Monte Carlo and now Bootstrap methods are again 
favoured in this situation since numerical experiments 
can be performed to generate synthetic data sets 
which mimic the original set. Normally, based on such 
trials, tabulated statistics can be produced which are a 
function of the sample size and the  sample moments 
(eg. mean, standard deviation and sometimes skew-
ness etc). Lawless (1974) presents detailed argu-
ments on the subject of confidence limits for both the 
Gumbel and Weibull types. 

Return Period and Encounter Probability 
As most engineers are aware, probability of extreme 
events is often conveniently given as a Return Period 
expressed in years. The return period is simply the 
average (ie. the mean) time in years between equal-
ling or exceeding a particular event level. Some prefer 
the term Average Recurrence Interval or ARI, but the 
meaning is the same. Use of the Return Period is 
variously misunderstood, however, with the public 
sometimes assuming that a given event will not occur 
again until a fixed period of time has elapsed. There 
appears no easy way to overcome this confusion ex-
cept to always express probability of exceedance on 
an annual basis, but this leads to dealing with quite 
low values which are easily confused and misquoted 
anyway. 
 
It should be noted that there is nothing special about 
the time units chosen for the return period but that 
years are a convention which suits the purpose of im-
plying low likelihood. In the case of using partial dura-
tion series the essential return period is actually the 
average inter-arrival time of the chosen events, which 
for a random process is the inverse of the Poisson 
parameter λ - the average number of events, say, per 
year. This event-time-interval must therefore be ac-
counted for in the calculation of the return period 
when expressed as years, ie. 
 
 F( x(Tr) ) = 1 / (λ Tr) 
 
where Tr is the return period in years. 
 
Remembering that Tr is simply the average period, 
this implies that the same event magnitude may 
sometimes occur more or less frequently in any par-
ticular similar length of time. This is due to the natural 
variability of random sampling from a population. In 
fact, the N year event magnitude has a 63% chance 
of being equalled or exceeded in any N year period. 
This derives from the following formula due to Borg-
man (1963) which relates the return period R to an 
encounter interval L , the so-called encounter prob-
ability P in that interval being: 
 
 P( x(Tr), L ) = 1 - exp ( -L/ Tr) 
 
or, via the often used but approximate form 
 
 P( x(Tr), L ) = 1 - (1 -1/ Tr)L 
 
This particular formula is often preferred over the re-
turn period alone because it relates the risk of an 
event to a potential lifetime of exposure, which can 
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vary depending on the use of the data. For example, 
the design of temporary works during construction of 
a port could be based on a criteria that the project will 
accept a 10% chance that a given wave height could 
be exceeded within a six month period. This means 
that the equivalent return period being considered is 
actually close to the 5 year value. Similarly, the 500 
year return period event might be considered as a 
criteria for the lifetime of the permanent port struc-
tures since it has about a 10% chance of being ex-
ceeded in any 50 year period of time. Figure 1 pre-
sents a graphical view of the relationship between 
encounter probability, lifetime and return period. 

A Brief Review of Some Published 
Methods 
 
Like all evolving sciences, the literature is peppered 
with different approaches and varying theoretical ar-
guments. Whilst the references presented here are 
not exhaustive they represent a good cross-section of 
the work done which specifically relates to the estima-
tion of extreme wave heights for engineering pur-
poses. In an attempt to add an historical understand-
ing to the major developmental themes, Figure 2 as-
cribes a rough dependency to the studies summarised 
here in the form of common symbol shapes. A particu-
lar symbol shape signifies that in the time progres-
sion, the author has drawn either directly or indirectly 
from earlier work having the same symbol shape. 
(This is an attempt to avoid the rather complicated 
visual linkages which might occur using lines and ar-
rows.) 
 
The absence of a final single position in this develop-
ment should rightly be interpreted as an evolution 
which is still continuing, albeit on a narrower scale. 
The following summaries omit the essentially statisti-
cal works (as indicated in Figure 2) which underpin 
the engineering studies, although from time to time 
relevant points derived from these works are cited. 
 

Phase 1 - 1960’s Awareness 
The theoretical works by Fisher and Tippet (1928), 
Weibull (1939), Jenkinson (1955) and Gumbel (1958) 

were well established by the early 1960’s and had 
found wide application across various disciplines. 
 
Bretschneider (1958) and Borgman (1961) are per-
haps the earliest references to the problem by re-
searchers who became prominent in the wave predic-
tion arena. Borgman’s early work is based on his stu-
dent thesis and necessarily theoretical; Borgman 
(1963) followed up with a more readable entry into the 
engineering literature and introduces the very practi-
cal concept of non-encounter probability. Draper 
(1963) presents an example of solving the very prob-
lem which is the subject of this report. He used a total 
data approach and showed that a Lognormal distribu-
tion fitted his data well. The total data approach using 
the Lognormal distribution for estimating extremes is 
now not encouraged, mainly on the theoretical 
grounds of data independence and the asymptotic 
limits of the Lognormal actually being FT-I. Its ac-
cepted use continues however in the area of opera-
tional wave exceedance and persistence. 
 
As an aside, Gringorten (1963) at this time had identi-
fied the need for unbiased probability plotting rules for 
the EV1 (Gumbel) distribution. This fact has not been 
universally agreed or taken up but will be shown to be 
a recurring theme in the least-squares method of dis-
tribution fitting. 

Phase 2 - 1970’s Practical Needs 
During this time the offshore oil and gas industry 
spurred analyses for extreme design criteria in many 
parts of the world. Thom (1971, 1973) was amongst 
the first to try to rationalise a global view of extreme 
winds and waves. 
 
Petrauskas and Aagaard (1971) of Chevron Oil pre-
sented one of the most enduring and arguably ad-
vanced analysis methods for extreme waves which 
has probably underpinned the majority of offshore 
installations in the past 20 years. Their method is 
based on least squares fitting of the data set to eight 
separate distributions - the Gumbel and seven 
Weibull, based on a range of shape factors. The 
“best” distribution is then assigned by a statistical test 
involving Monte Carlo sampling and a goodness of fit 
measure. They also considered confidence limits, util-
ised the Gringorten (1963) plotting rules as well as 
developing corresponding unbiased plotting rules for 
the Weibull distribution, recognised the role of the 
Poisson inter-arrival parameter and advocated use of 
encounter probabilities rather than return periods. 
 
Other developments through this period can be attrib-
uted to Nolte (1973), addressing the emerging
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Arctic developments and Borgman (1975) now firmly 
in the engineering context. 
 
The mid-1970’s also saw significant developments in 
associated areas such as the emerging work by Law-
less (1974, 1978) and an extensive study on flood 
frequencies in the British Isles (N.E.R.C. (1975)). 
From this latter work Cunnane (1978) argues most 
strenuously the case for unbiased plotting formula. 
 

Phase 3 - 1980’s Experimentation and Re-
view 
Teh-fu and Feng-Shi (1980) emphasised the difficul-
ties of using annual maxima series in regard to ty-
phoon estimates. They proposed the use of the com-
pound Poisson-Gumbel distribution to allow incorpora-
tion of all events above an arbitrary threshold, rather 
than the Poisson return period scale shift used by 
others. 
 
Isaacson and MacKenzie (1981) present perhaps the 
first attempt at an objective review of the subject for 
general wave analysis applications. They cite 
Petrauskas and Aagaard (1971) extensively and gen-
erally retain the value thereof as well as introducing 
the earlier work of others. They treat the FT-III in 
some detail, pointing out the difficulty of plotting data 
without some a priori selection of one of its three pa-
rameters, normally the shape or the location. 
 
In the same year Carter and Challinor (1981) looked 
in detail at the differences between annual maxima 
and monthly maxima data series for the EV1. They 
found the annual maxima approach could underpre-
dict extreme values and that if a monthly series were 
independent and EV distributed, then the annual 
maxima could not be EV distributed. They recom-
mended a compounded annual distribution based on 
the joint probability product of the monthly (or sea-
sonal) maxima. Their paper is the first to endorse use 
of the maximum likelihood estimator rather than the 
least squares method and plotting positions. They 
followed in Carter and Challinor (1983) with a review 
of the various data fitting methods, concluding like 
Gringorten (1963) that “Gumbel’s method using the 
Weibull plotting position” was highly biased and 
should not be used. They found the method of mo-
ments almost as good as the maximum likelihood for 
their (large) data series. 
 
Lettenmaier and Burges (1982) did a similar study 
which reached the same conclusions, again for the 
EV1, and criticised continued textbook use of the so-
called Weibull plotting formula. 
 
Earle and Baer (1982) however did not heed the call 
and undertook studies based on the Lognormal distri-
bution and using the Weibull plotting formula. Their 
simulation work designed to address the question of 
uncertainties is judged by Goda (1988) as inadvertent 
proof of the Weibull plotting bias. Others criticised 
their use of the Lognormal as an inappropriate choice 
for extreme value analysis. 

 
Throughout this period Effron (1979, 1982, 1987) was 
proposing a relatively bold statistical sampling theory 
to be known as The Bootstrap, later to be taken up by 
others and applied to this area. 
 
Wang and Le Mehaute (1983) examine the issue of 
independence of data samples and develop relation-
ships to show its influence on the extrapolation to de-
sign heights. Curiously they determine that their 6 
hourly data is apparently independent. They also pre-
sent a technique for estimating how the length of the 
data sample directly affects the confidence interval of, 
say, the 100 year return period. 
 
Muir and El Shaarawi (1986) present a very detailed 
review which also addresses general uncertainty in 
measured and analysed wave heights prior to any 
extreme value extrapolation. They cover aspects such 
as distribution type, data selection (including censor-
ing), goodness of fit and confidence limits.  They rec-
ommend use of the maximum likelihood estimator 
with (usually) censored data. 
 
Goda (1988) enters the field with an extension of the 
Petrauskas and Aagaard (1971) method. He reduces 
the candidate Weibull distributions from seven to four 
and develops slightly modified plotting position for-
mula. Also using Monte Carlo methods, he examines 
the potential bias in estimates when the true distribu-
tion in unknown and develops confidence limits based 
on empirical factors.  This method has been imple-
mented by Leenknecht et al (1992) in the US Army 
Corps of Engineers Coastal Engineering Research 
Centre software package ACES - Automated Coastal 
Engineering System. 
 
Rossouw (1988) presents an analysis of eight years 
of wave buoy data from South Africa. He discusses 
use of lag correlation to derive a suitable sample of 
maxima and chooses to group the data in a seasonal 
way. Curiously he found his data was insensitive to 
independence issues when using the method of mo-
ments for fitting. He provides a useful description of 
the differences between random variations of a sam-
ple and confidence limits of its parameters and is the 
first to advocate use of The Bootstrap for deciding 
between distributions. 
 

Phase 4 - 1990’s Debate Continues ... 
Andrew and Hemsley (1990) also apply The Bootstrap 
for this purpose as well as providing a useful review of 
the general extreme analysis approach. They warn of 
the ability of the Weibull and EV1 to provide equally 
likely fits to data but to predict quite different extreme 
height at long return periods. They use a data splitting 
technique to separately drive The Bootstrap method 
but use of the (discredited) Weibull plotting formula 
may impact their results. 
 
Goda and Kobune (1990) reject The Bootstrap as be-
ing ineffective in discriminating between candidate 
distributions. In this paper they also considered the 
EV2 and developed a plotting formula for its use. 
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Goda (1990) is essentially the same methodology as 
his preceding publications but with a wider treatment 
of some related aspects. 
 
Wyland and Thornton (1991) show how three different 
hindcast data sets respond to the various types of 
extreme value analyses (mainly based on Isaacson 
and MacKenzie (1981) and Muir and El Shaarawi 
(1986)). They criticise the MSD error criteria formula-
tion of Petrauskas and Aagaard (1971) and also Goda 
(1988). In their Weibull analyses they chose a priori 
location values rather than shapes, which would ap-
pear to offer some benefit. 
 
Statisticians Castillo and Sarabaia (1992) entered the 
field, sweeping away the burdens of the past and giv-
ing specific advice on the type of EV distributions 
which should be used. They advocated restricting 
analyses to the extreme tail of the data set only by 
using a weighted least squares approach. Goda 
(1993) then responded in a vigorous exchange which 
challenged their basic understanding of the problem. 
 
In 1990, the Section on Maritime Hydraulics of the 
International Association for Hydraulic Research 
(IAHR) had organised a Working Group on Extreme 
Wave Statistics with the aim of reaching a mutual un-
derstanding of the merits and demerits of the methods 
used in extreme statistical analysis. Representatives 
were invited from eight separate institutions to coop-
eratively develop a recommended procedure. The first 
results of the Working Group are presented in the 
Proceedings of the Second International Conference 
on Ocean Wave Measurement and Analysis as Goda 
et al (1993). In this paper, different methods of fitting 
an example Weibull (k=1.4) data set are described. 
The trial concluded maximum likelihood was best for 
uncensored data and least squares better for cen-
sored data (in the absence of a technique for maxi-
mum likelihood which correctly treats censored data). 
While individual estimates of the 100 year wave 
height varied  with a standard deviation of between 
6% to 12%, the overall bias was only 3%. 
 
The companion paper by van Vledder et al (1993) 
allowed each of the eight groups to use their preferred 
method to determine the extreme value distribution of 
two sets of data. The 100 year wave height estimates 
from all groups were within 10% and the 90% confi-
dence bands were within 10% of the 100 year wave 
height. The paper comments specifically on data cen-
soring, pointing out that as the threshold for inclusion 
was decreased, the 100 year wave height prediction 
increased. 
 
In the same publication, Teng et al (1993) use 13 
years of wave buoy data and fit a Lognormal distribu-
tion (contrary to popular opinion). They also modify 
the plotting formula of Gringorten (1963) against the 
recommendation of Goda et al (1993). 
 
Mathiesen et al (1994) presents the final recommen-
dation of the IAHR working group. They conclude (or 
rather concur) that the partial duration (points over 

threshold) approach is preferred and that the Weibull 
distribution is superior. No recommended fitting 
method is proposed. Various goodness of fit tests are 
advocated, especially the Q-Q plots, and use of confi-
dence limits derived from Monte Carlo modelling are 
suggested. All in all this paper is rather tame - there 
are clearly still some strongly held beliefs between the 
various institutions involved. 
 
The final reference cited here is that of Burcharth and 
Liu (1994). They advocate EV1 and Weibull as the 
candidate distributions and claim least squares is bet-
ter than maximum likelihood when the true distribution 
is unknown, based on the data set they used. Interest-
ingly they maintain the Weibull plotting position is the 
preferred one amongst all the options available! 

Conclusions and Recommended 
Method of Analysis 
 
The “best” method of extreme value analysis is yet to 
be fully agreed amongst a fairly wide range of differing 
views, each affected by disciplinary, organisational, 
cultural and personal factors. The previous section 
highlights many of these different approaches. There 
is a degree of “baggage” evident in the literature 
which relates to the early lack of computational power 
for performing data fits such as the maximum likeli-
hood and also undertaking Monte Carlo style experi-
ments. There would seem to be much less reason 
now for not adopting such methods and The Boot-
strap is an emerging technique which will probably 
eventually take root. The existing methods are heavily 
influenced by the subjectivity of institutional ap-
proaches - this is evident in the Mathiesen (1994) 
summary paper which unfortunately fails to draw more 
specific recommendations on this topic. My conclu-
sion here is that the “best” methodology is not neces-
sarily generally available at this time but will gradually 
emerge. 
 
With this in mind, the presently recommended ap-
proach for the analysis of Departmental wave data 
would be that of Goda (1988) as implemented by 
Leenknecht et al (1992) in the CERC ACES software 
system (Version 1.07). The software is available in the 
Department, the necessary analysis procedures are 
well documented and a range of output options are 
available. All that remains is a consistent approach to 
data set sampling based on the guidelines presented 
earlier. Appendix A provides some guidance on the 
data sampling methods which could be developed.  
 
It is possible that ACES will be updated in time to 
more robust methods but in the interim it will provide a 
consistent and recoverable standard for extreme 
wave height analysis which can also be used for other 
extreme data sets such as storm tides with the appro-
priate interpretation being applied. Appendix A in-
cludes an example data analysis using ACES and 
explains the necessary steps in detail. 
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Appendix A - Suggested Analysis 
Procedure 

This section presents some suggestions for data 
sampling and provides an example of the use of the 
ACES (Version 1.07) analysis package for extreme 
wave height analysis. At the outset it is worth noting 
that this package is somewhat cumbersome in regard 
to its data input/output requirements - “user antago-
nistic” would be an appropriate description. However, 
there is a reasonably comprehensive user guide 
available and this is recommended reading in order to 
avoid some of the more subtle pitfalls. 

It will soon become apparent in the following devel-
opment that there is not necessarily a step-by-step 
progression when preparing the recorded wave height 
data set for extreme value analysis. Many of the deci-
sions which need to be made may be dependent on 
other decisions and so typically an iterative approach 
is required. This stems as much from the philosophi-
cal problem as to what constitutes an “event” as well 
as more physical issues such as accuracy of sampling 
of the true peak values. 

Step 1: Data Assembling 

The base time series of wave height should first be 
assembled from either a single site record or an 
amalgamated (gap filled) record as appropriate, de-
pendent on whether gap filling can be justified from an 
adjacent site. The justification for gap filling would 
need to consider aspects such as proximity, exposure 
and water depth. The highest sampled-frequency data 
should be used in the first instance but this could be 
initially reduced to (say) an hourly peak data set using 
windowing if retention of a full data set is prohibitive. 

Where data sets which have different base sampling 
frequencies (eg. six hourly versus hourly etc) are to 
be combined and considered as a single data set, 
some consideration should be given to standardising 
the record. For example, an hourly data set is pre-
ferred since it is more likely to sample the true peak, 
depending on the characteristic storm hydrograph 
shapes in the region. To convert, say, a six hourly 
data set into an equivalent one hourly set requires the 
development of a transfer function between the two 
sets. This would only be reliable if the available one 
hourly data record were of comparable or longer dura-
tion than the six hourly set. By comparing the charac-
teristic errors between the six hourly and one hourly 
discretely sampled points from the one hour data set 
alone, it would be possible to develop a regression 
line relating the potential error in the “true” (one hour) 
peak value when using only six hourly sampled data. 
This could then be applied to the six hourly recorded 
data set to provide a “synthetic” one hourly peak data 
set equivalent. The success of this technique would 
depend on whether or not similar weather conditions 
were experienced during the two periods when the 
sampling frequency was different. To be effective, this 

approach also needs to be done within the context of 
individual events rather than all the data taken to-
gether, since it is the adjusted peak value of the event 
which is ultimately sought. On this basis it may need 
to be deferred until the results of Step 2 are known. 

Consideration at this stage should also be given to 
possible separation of the data set to ensure equally 
distributed populations. For example, a simple sea-
sonal split may be indicated. In other situations the 
populations may be mixed throughout the year due to 
tropical and extra-tropical influences at various times 
and the separation may need to be undertaken on the 
basis of a more detailed assessment of weather 
charts, wind records or wave direction (where avail-
able). Separation could also be achieved as part of 
the event sampling process itself (refer Step 2) on the 
basis of specifically identified event parameters. For 
example, wave hydrograph shape parameters (long 
versus short duration, sharply versus mildly peaked 
etc) may indicate appropriate population splits. 

Step 2: Event Sampling 

Initially, a base threshold of wave height for consid-
eration is normally selected. This is logically con-
nected to the event population itself although a priori it 
may not be obvious which value to use. The rule of 
thumb is to settle on a threshold value which will at 
least trigger something like the “expected” number of 
events each year. The “expected” number might be 
loosely based on a meteorological overview, for ex-
ample, or be derived from operational exceedance or 
persistance information. 

The use of auto-correlation analyses using a series of 
time lags may prove a useful initial tool in this proc-
ess. The minimum time interval between successive 
events should be somewhat longer than the time lag 
for which the auto-correlation function is 0.3 to 0.5 
(Mathiesen et al (1994)). A period of several days is 
the norm but this will depend on the particular wave 
climatology of the area. 

Alternatively, assuming the above approaches do not 
lead to an obvious means of identifying the data of 
interest, it may be useful to attempt a parameterisa-
tion of the time series to identify “events” with certain 
characteristics. For example, and by way of sugges-
tion only, the data could first be filtered to retain, say, 
peak three hourly values. This would remove a de-
gree of diurnal variability and noise (note that there is 
no particular need to retain accurate timing for the 
data peaks at this stage so long as the filtering period 
is much less than the inter-event interval). The 
smoothed (filtered but with peaks retained) data set 
could then be analysed akin to a traditional “zero 
crossing” analysis or a discrete event variant on a 
persistance analysis to identify the characteristics of 
the time series. Properties of interest might include 
the statistics of  half-height duration of peaks, ie. the 
period of time that wave height exceeds half of the 
peak height. From such statistics a picture should 
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emerge of the classes of events as a function of mag-
nitude, duration and perhaps shape. 

The above method, if successful, would directly pro-
duce the sample of peak events of interest. However, 
if a simpler “data window” is selected based on time 
lags or other means then the series must still be sam-
pled to obtain the extreme data set. On this basis the 
time series is conditionally sampled so that the largest 
wave height (above the selected threshold) is se-
lected within each data window. This essentially 
means moving the window each time to the time of 
the next occurrence of a wave height which exceeds 
the threshold value, selecting the highest wave in the 
window and then repeating the steps above. 

Preparing a series of plots showing the event count 
yield from these procedures based on a range of as-
sumptions can be of considerable benefit. For exam-
ple, plotting the number of detected events versus the 
window interval (eg. the time lag) or versus the se-
lected height threshold can be useful. 

It should be remembered also that the wave period 
associated with each peak wave height might need to 
be retained as part of a steepness assessment. The 
unfiltered (raw) time series would then need to be ref-
erenced to locate the relevant data of interest. 

Step 3: Analysis 

The ACES system is relatively straightforward in 
terms of analysing the final data set. The “Extremal 
Significant Wave Height Analysis” option is contained 
within the so-called Single Case “Wave Prediction” 
module. (Note that the technique is not limited alone 
to Hs but could also be applied to Hmax or other 
quantities such as storm tide levels. The output label-
ling however cannot be changed and so data would 
need to be additionally plotted and presented.) 

Care should be taken to ensure ACES has been cor-
rectly setup via the INSTALL program if hardcopy 
graphics output is required. Also, on entering ACES, it 
requires specification of the display units (eg. metric) 
and the print device. It also permits explicit naming of 
the default output files, which in this case are the 
“TRACE.OUT” file which will contain any on-line edits 
made to the input data file, and the “PLOTDAT1.OUT” 
file which will contain the details of the data analysis 
and can be used for subsequent external plotting and 
presentation. No other files are used. 

ACES assumes initially manual data entry but the 
format of the file is readily derived and should be able 
to be externally generated to suit. 

The input parameters are as follows: 

1. units of the data (eg. meters) 

2. the declared integer number of events in the data 
period (NT) 

3. the data period in decimal years (K) 

4. the site water depth - a simple check is made on 
extrapolated heights and a warning issued 

5. a title for the data set 

6. the data set itself, being N values (maximum up to 
NT values) 

ACES calculates the Poisson parameter LAMBDA 
and the censoring parameter NU based on this infor-
mation and these are displayed on the output for ref-
erence purposes. LAMBDA is simply NT/K but the 
software seems to override the reported value of NT 
to be be not less than K. There should be no theoreti-
cal reason why the time period between events 
should be limited to a maximum of one year. In any 
event this overriding of NT appears to not affect the 
true calculation (probably a “bug”). 

NU is simply N/NT indicating the proportion of events 
being analysed via the truncated distribution form. 
Hence, if NT = N then the data set at this point is con-
sidered “uncensored”. If fewer than NT values are 
specified then the data set is considered “censored” 
by the user, ie. not all of the available values are to be 
included in the best fit analysis. If censored, then the 
truncated form of the particular distribution is invoked 
rather than the unlimited form. 

Figure A-1 presents the data input screen for the case 
of an example set comprising 50 extreme Hs values 
(Hs_TEST.IN) from a 10 year record in 20m depth, 
based on a 2.6m threshold value. A further screen is 
provided to select from a range of confidence limits 
(95% is the default and is used here). The higher the 
confidence limit selected, the wider the indicated 
spread of values is likely to be. 

After analysis, ACES presents a series of summary 
screens showing the fits produced for each of the 
candidate distributions, ie. FT-I and Weibull with k = 
0.75,1.0,1.4 and 2.0. 

The first screen is given as Figure A-2 which reflects 
the base parameter values of N, NT, NU and 
LAMBDA and shows the predicted Hs values for re-
turn periods out to 100 years. Goodness of fit statis-
tics are also shown for each distribution. Note that 
ACES, based on Goda (1988), does not utilise the 
types of non-parametric goodness of fit or Q-Q style 
tests described earlier. Two statistics are used here, 
the correlation parameter and the sum square of re-
siduals. The best fit should indicate a correlation value 
closest to 1.0 and the smallest value of the residual. 
In this case the Weibull k=0.75 produces the best fit. 

The second screen presents the confidence limits 
about the mean values, given in Figure A-3. 

Finally, the third screen gives a reference table relat-
ing the return period to the encounter probability, 
shown in Figure A-4 
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A plotting option is available on-line whereby a par-
ticular data fit or all data fits can be selected and 
some control over colours and windowing etc is pos-
sible. The graph may be dumped to a plotting device 
or alternately copied onto the clipboard. Figure A-5 
presents the best fit data for this example where 
k=0.75. The graph scale can be log or linear only, ie. 
specific Weibull or Gumbel scales are not available. 

The output file (default PLOTDAT1.OUT) has all the 
necessary information to enable a plot to be externally 
generated, including the derived a, b and k parame-
ters for each distribution. Additionally, the Goodness 
of Fit statistics can be simply plotted to aid the inter-

pretation of the analysis as shown in Figures A-5 and 
A-6. In this case there is a clear preference to select 
the k=0.75 Weibull option using both of these statis-
tics, which is also easily supported by visual inspec-
tion of the graphs for the other k options. 

If the data for a region has been split into different 
populations (eg. seasonal) for the purpose of fitting 
separate distributions, they can be recombined to 
produce a total distribution for the site. Assuming in-
dependence, the joint probability of the combined sets 
is simply the multiplication of the probabilities of each 
predicted wave height level.

 

 
Figure A- 1 Input Data Set Screen 
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Figure A- 2 Return Period Screen 

 
Figure A- 3 Confidence Limits Screen 

 
Figure A- 4 Encounter Probability Table 
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Figure A- 5 Graph of "Best Fit" Weibull k=0.75 
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Figure A- 6 Correlation Parameter 
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Figure A- 7 Sum Square of Residuals 


