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SUMMARY

During this extended analysis of the Froya data base, air - sea temperature difference
is used as a stability indicator, and a detailed comparison to models available in the
literature is performed. Only data for the maritime sector of the Sletringen station is
discussed in this report.

General procedure

The observed data are time series of mean values over the logging period 600/512 s =
1.16 s. The data are mostly treated for time periods of T = 40 min, giving 2048
measurements per period.

Turbulence intensity and gust factors are defined from modified time series where the
synoptic variations are eliminated or reduced by a two step procedure; first the difference
between the running 40 min mean and the period mean is subtracted from each element in
the time series; second, harmonics with periods T, T/2 and T/3 are digitally filtered out.
The resulting time series have a period mean value close to that of the original time series,
and contain the turbulence corresponding to harmonic periods of 10 min and shorter.

The Monin-Obukhov length scale coefficient X’ is used to represent atmospheric
stability. It is calculated from the air - sea temperature difference, and is defined by

X =k g {Cy (Tyy, - T/ Ty + T Cp (Qyr - Ggea)} (la)
T = 0.61/(1 + q,)s Qv = Ty Dear(Tair): Yeea = Gsar(Toea)- (1b)
Qe (T) = 0.00375 exp[ 19.872 ( 1 - 273/T)] (Ic)
k =04, g=98lms?, C,=0.00127, C; = 0.00128, 1, =0.75 (1d)

where q,;.. g, represent the specific humidities in the air and immediately above the sea
surface, respectively. They are not measured directly, but related to the temperatures by
the above formulae. The air temperature T, is at Sletringen measured at 5 m height.
When local temperature data are lacking, substitute data are calculated from the
meteorological observations at the Sula lighthouse.

The physical quantities calculated on the basis of the time series are treated as
functions of three or four variables, the three being reference wind speed u, (the period
mean at 10 m height), atmospheric stability (\') and height, z. The mean and the variance
of the quantity in question are calculated for a set of cells in the variable space. By a least
squares principle, model parameters are then adjusted to reduce the difference between the
model and the observed values for the cells in the ensemble of observations. The number
of observations in each cell divided by their variance is used as weight factor.

Most of the discussion in the present report is concerned with neutral atmospheric
conditions. The majority of the models in the literature are only valid for the neutral case.
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From Eq. (10) below, it also follows that the absolute value of the dimensionless Monin-
Obukhov stability variable z/L goes to zero at high wind speeds, thus the case of neutral
stability will be most relevant for extrapolation to design wind speeds.

Wind speed profiles
Some ten models for the wind speed profiles were examined. The best fits were

obtained using the logarithmic law,
u(z) = (u/x) In(z/zy), « =04 2)

where u, is the friction velocity, k is von Karman’s constant and z, is the roughness length.
Experimentally, the wind speed ratio

u@lu, = 1 + o« In@z/z), o = [Inz/zg)]" (3)

has been studied, u(z) being the 40 min mean wind speed at height z, and u, the
corresponding reference wind speed at reference height, which for Sletringen is z. = 10.5
m. The observations suggest that the height coefficient « increases approximately linearly
with wind speed. Good fits were obtained using the Charnock relation, which relates the
roughness length to the friction velocity,

zy = (acy/8) u’ “4)

where ac, is Charnock’s constant and g the gravitational acceleration. When Egs. (2) and
(4) are combined for z = z

re

an implicit relation for z, in terms of a., results. A least
square fit to the data for neutral atmospheric stability gives

ac, = 0.0172 | (5)

which is within the range of values proposed for Charnock’s constant.
The drag coefficient is defined by

Cp = (u,./ul.)2 (6)
From Egs. (2-3), the logarithmic law may then be expressed as

u@)fu, = 1 + «In(@/z). « = (Cp)”*/k (7)
Assuming the Charnock relation and the logarithmic law to be valid, the drag coefficient

Cp, will approximately be a linear function of u,. The best fit to the neutral data were
obtained by assuming a linear Cp, - u, relation, and then fitting the coefficients, the result is
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Cp=c¢ +cu ¢ =52610% c,=7177910° (8)
In the parameterizations discussed below, where u(z) is used as an input, it made in
general very little difference to the fit whether Egs. (2-5) or (6-8) were used.

For general stability conditions, the standard Monin - Obukhov (M-O) extension of the
logarithmic law,

u(z) = (u/x) [ In @/z) - ¥, @/L) ] ©)

combined with the Charnock relation, was found to give a good fit to the data. The M-O
variable z/L is defined as

zZIL =z X u/u’ (10)
The wind speed profile is described by

u(z)/u(z,) = [ In (z/zy) - v,,(z/L) 1 / [ In (z,/2y) - v,,(z,/1) ] (Ln)
where for unstable conditions,

v (z/IL) = In[(1 + X)* (1 + X*)/8] -2 tan’'(X) - n/2

m

(12)
X=[1-v,zL]"" zL<0
and for stable conditions,
v, (z/L) = - 8, z/L, zIL >0 (13)

In analogy with the neutral case, the Charnock relation and Eq. (9) will implicitly define
z,, which in this case depends both on reference wind speed and stability. A least squares
fit to the full set of data for the wind speed profile, where also 8,, and v, in Egs. (12-13)
were left as free parameters. gives the values

m

ac, = 0.0178, B, = 3.64, v, = 17.48 (14)

The reader is referred to Sec. 4.2 for the details.

For neutral atmospheric stability, the inertial dissipation method for determining u, is
found to give good agreement with the results following from the Charnock relation and a
fit to the profile data. Corrections for aliasing and sampling effects in the spectra are
important for the inertial dissipation method. At the Nyquist frequency, fy, = 0.43 Hz in
our case, shape corrections, i.e. deviations from the f 33 pehaviour, typi(cally constitute
10%. and an extrapolation procedure was therefore established to find the asymptotic
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values. For non neutral atmospheric conditions, the predictions for u. from the
conventional formulation of the inertial method do not agree with the results from the fits
of the wind speed profiles discussed above.

Turbulence intensity
The turbulence intensity for a period is defined as the ratio between the standard

deviation and the mean value for the wind speed time series
1,z) = o,/ u() (15)
For neutral data, a very good fit was obtained by the following ad hoc model

I, =101, +1 ul@z)®
(16)
I, = 0.0601, I, = 0.0026 s/m, a=-0.218

Thus. the turbulence intensity was found to increase linearly with reference wind speed,
and decrease rather strongly with height.

For general atmospheric stability, reasonable agreement was found by adding a
stability dependent factor to the above formula,

L) =1, + 1, u1@z)[1-] @L) u/10m/s)® (z/z)°]
(17)
I, =126 b=15 c=0.85

Thus, the stability dependence was found to be proportional to the M-O stability variable
z/L and to decrease strongly with u_and z. At design wind speeds, the relation for neutral
conditions may be used.

Reference gust factors

The reference gust factor for a time interval t, is defined as the ratio between the
observed maximum mean value over an interval t, during a period T, and the reference
wind speed for the same period.

Good fits for the reference gust factor were obtained by relating it to the the
turbulence intensity I, and the wind speed ratio, the explicit formulation for general
atmospheric conditions being

G, T.z) = [u@ /u 1 {1-[g + g Int/T) + g n(t,/T)’ 11, } (18)

The ordinary gust factor will be defined if the u(z)/u, factor is omitted. The above
recommended formulae - dependent on the atmospheric stability - should be used for I,
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and u(z)/u,. The coefficients and goodness of fit turns out to be the same for the two
formulations of the wind speed profile, thus, either Eqgs. (2-5) or (6-8) may be used.

For neutral conditions, the values for the best fit of the "new” parameters in Eq. (18)
are

g, = 0.726, g, = 0.655, g, = 0.0188 (19)
For general atmospheric stability, the corresponding set is
g, = 0.803, g, =0.732, g, =0.0279 (20)

One point turbulence spectra

Some 17 models have been compared to the experimental data. In general, much
flatter spectra have been observed in this project than predicted by traditional models of the
Kaimal or Harris type. Therefore, the models introduced in the Phase 1 and Phase 2 of
this project have been found to give by far the best representation of the data. These
models are discussed in Sec. 7.2-M8 and -M13 for neutral data, and in Sec. 7.3-M3 (the
Phase 2 model only) for general atmospheric conditions.

For neutral data, the one term model from Phase 1 will for many purposes be
practical. It may be written as

A(z,u) v
fS¢) = 5/3 v = M foax = U / L(z,u) 21
[1 + 1.5"""

where A and L will be functions of u, and z. In agreement with the main project results,
these functions are assumed to be given by power law relations,

L=1L, (z/z,)% (u!./uO)Qz, z. = 10.5m, u, =20 m/s

(22)
A=C u[.2 (z/zl.)Q3 (ul./uo)Q4
A least squares fit to the data gives the following results
= 0.468
L(z.u,) = 890 m (z/z)"°" (u /uy)’*" (23)

A(z.u) = 0.0738 ur2 (z/zl.)'o'216 (ur/uo)o'752
A numerical integration over frequency gives the total variance corresponding to this fit as
o’ = 0.2384 A(z.u,) = 0.0176 u? (2/z,)°*'® (u /u))’ "> (24)
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The two term model from Phase 2 written on the form

£S C, (z/z)° f G f
u’ [f, + 1.51] [f," + 1.5 ]

r

has been adopted to spectra for both neutral and general stability. For neutral data the
parameterization is

T, = Q, z/u(2) T, = Q, / u(z) (26)
The values of the parameters are determined by a least squares fit to the data,

C, =25210°, C,=4.7910°, a=3.32, b= 1.60,
27)
n=0413, Q =18.5 Q,=3610m

This second parameterization for neutral data gives a somewhat better overall fit.
Extrapolations to design wind speeds are given for three spectral regions in Sec. 7.4. The
two models for the wind speed profiles discussed above did not show significant
differences.

For general stability, Eq. (25) is parameterized to include dependence on the stability
variable X' in the following way

T, =Q,z/u@@) T, = Q, exp(-Q; p)/ u(z)
(28)
n =n, + n, exp(Q, p) o =X\ (u/10)*
A least squares determination of the parameters yields
C, =26710°, C,=54910" a =328 b=168 c=2.68
n, = 0.1893, n, = 0.0325,
(29)

Q, =243, Q, = 17380, Q, = 40240, Q, = 26 960

Aliasing and sampling effects were found to be important for the values of the model
parameters, and have been taken into account.

The norm. or frequency integral of the spectral function S(f), is by definition equal to
the total variance. A good fit to the observed spectrum will lead to an S(f) having
important contributions to the norm below the frequency region studied here. Thus this
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norm is not equal to the variance calculated directly from of the observations, which was
used as a basis to obtain the turbulence intensity discussed above.

Coherence spectra

Again, the model introduced in Phase 2 was shown to give a considerably better fit to
the data for vertical coherence than the alternatives. Only the Sletringen data were treated
anew, since the stability variable X’ based on the air - sea temperature difference is not
directly applicable to the Skipheia data.

Vertical coherence for neutral stability is described by a modified Davenport model,

Coh = exp| - a, 8z f/ u(z,)], bz = | z,-2, |, z, = [z zz]%
(30)
a, = [a, + a, exp(-bh]az'/z" 2z, =1z 2] %710

A least squares fit to the data gives

a, =183, a, =69, b=1037 p=044 q-= 0.29, a,,=0.0246 (1)

The Phase 2 results for lateral coherence were found to imply a considerably shorter
coherence length than predicted by the ESDU and Bowen models. The Phase 2 results are
however not incompatible with results due to Kristensen et al. (1981). Experimental results
for smaller distances than presently available at Skipheia would clarify the situation.
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1. INTRODUCTION

During the main part of the present project, a complete, analytical description of the
structure of marine winds in the atmospheric boundary layer was established based on
extensive analysis of data. The analytical description was formulated within the present
project and was to a small degree only related to earlier published results. The description
is valid within the range of wind speeds 10 - 25 m/s for which data were available.
However, the adequacy of the description for design conditions with wind speeds of the
order of 40 m/s has been questioned. In order to resolve that extrapolation question it
becomes urgent to compare the data with available models established by other research
groups. In particular, emphasis should be given to descriptions which have a theoretical
and sound physical basis and includes "universal” relationships. Clearly, if the present
data compare reasonably well with this type of descriptions, then the description for marine
winds becomes part of a context with a good experimental and theoretical basis.
Extrapolations within that framework are then well justified.

The present report supplements work done within the framework of the project "The
maritime turbulent wind field. Measurements and models”, and addresses extensively the
above type of problems. The report is the final report for Task 4 of the project extension
"Phase-2 - Extension-1"

The discussion in this report follows closely the schemes described in the Scope of
Work for the present project extension (hereafter referred to as SoW). The relevant
literature behind the various models used in this part of the project, is reviewed by O.J.
Andersen (Andersen 1991,a, hereafter referred to as OJA-R). The data collection system
and the preparatory treatment of the data are described in the final report for the main part
of this project (Andersen et al., 1991). In this report, only a very brief description of the
operations performed is given. For background and more detailed descriptions, reference
is made to the above mentioned sources. Conclusions and comments originating from the
present extension of the data analysis, will of course be given.
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2. DATA PREPARATION

For the various quantities defined from the experimental data, mean values are defined

over a period
T, = 40 min (1)

The raw data will in general be time series consisting of mean values corresponding to one
logging period,

T, = T,/2048 = 1.16 s 2)

The analysis is based on a modified time series obtained from the measured time series
through the following steps:

. From each instantaneous recording the moving 40 min. average is subtracted.
The mean value for the 40 min. period in question is added to each element.

2. The new time series is Fourier transformed by the FFT procedure, the
coefficients of the first, second and third harmonic are set equal to zero, and
then the inverse transform is taken.

The first of these steps will remove trends from the data, the second removes periodic
variations corresponding to periods longer than 10 min. Note that the second step will
preserve the mean for the period.

The exact heights of the wind speed sensors at Sletringen which are used in this
analysis, are 10.5, 20.5, 42.0 and 46.0 m. The first two sensors will henceforth be
referred to as being at 10 and 20 m height, respectively, but the exact height values are
used in the analysis. The mean wind speed of the 10 m sensor is called the reference wind
speed.

The wind direction is measured at 44 m height. Only data having a period mean wind
direction within the "maritime sector” running from 160° (S-SE) through south, west and
north to 40° (NE), is included in the analysis.

In the present analysis, the Monin - Obukhov length scale parameter X' is used to
represent atmospheric stability. It is defined by

XN =k g {Cy (T, - T/ Ty + T Ce (o - Agea) ) (3a)
T = 0.61/(1 +qy): Qair = T Gsa(Tai)s Gsea = san(Tiea): (3b)
., (T) = 0.00375 exp[ 19.872 ( 1 - 273/T)] (3c)
k =04, g=9.8lms? Cy=0.00127, C;=0.00128, r, =0.75 (3d)
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The relative humidity r,, has been assigned the typical value 0.75 since humidity has not
been measured. Thus, the specific humidity are a function of the air temperature T, only.
T, is taken as the mean temperature measured at Sletringen at 5 m height, and T, as the
corresponding sea temperature.

When data for air/sea temperature and wind direction are not available from
Sletringen, corrected and interpolated data from the meteorological station at Sula
lighthouse are used. These data were established by O.J. Andersen, who also has derived a
regression formula giving the connection between Ty, T,,, and the difference T, - T,
measured at Sletringen and Sula, respectively' (Andersen 1991b).

The spectral wind speed data are essentially prepared as discussed in Andersen et al.
(1991).

As a result of this data preparation step, a summary tape was produced which in
chronological order contains the relevant quantities needed for the subsequent analysis for
all periods when the necessary raw data are available.

- 14 -



3. GENERAL DESCRIPTION OF THE PROCEDURE FOR FITTING MODELS
TO THE DATA

The fitting program reads data from the data summary tape, period by period. If all
needed quantities are available and OK, and if all specified conditions for the particular
analysis are satisfied, the period data are processed and included in the fit. Examples of
conditions to be fulfilled are that the wind direction for the period is in the maritime sector
and that the air - sea temperature difference is within the specified range (cmp. Sec. 4.1
below).

The data were grouped into 16 classes of reference wind speed from 10 to 26 m/s,
each of width 1 m/s (occasional data with wind speed in excess of 26 m/s were included in
the 26 m/s class). If required, the data were further classified according to the value of X\’
(Eq. 3). In units of 10° ms?, the values of X’ are found in the range -21 to 6, mostly a
class width of 4 is used giving 7 stability classes.

The distribution of the data according to this classification scheme is shown in Table
3.1A-C, for the full data set, and for the selected sets of partially quasi stationary (PQS)
periods and quasi stationary (QS) periods, respectively. See Andersen et al (1991) and
Aasen (1990) for a discussion of the selection of these periods.

In addition to the two dimensional classification of the data according to period values
of u_and X’, a classification with respect to height is required (4 heights). The gust data
will contain gust values for 4 gust periods, and the one point spectral data contain data for
26 spectral ranges (particularities for the spectral data are discussed in the respective
sections below).

The data are thus classified in a three or four dimensional scheme according to the
type of analysis. For each cell ¢; in this multi dimensional space, a mean value M, and a
standard deviation o, is estimated by an ensemble averaging for the N; periods belonging to
the cell:

M = < Q > (1

o) = N, <[Q - M>, /(N;-1) )
where Q is the value of the quantity in question calculated from the data, and the brackets
< >, indicate that only events belonging to the particular cell No. i should be included in

the averaging. The correction factor N;/(N;-1) to the variance is included because the mean
value M, is also estimated from the sampled values.
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Table 3.1A The total set of data (1717 periods) classified
according to reference wind speed u, (m/s) and
stability variable X’.  The mean values for the
perioés in a line or in a coloumn is shown in the
heading.

M-0 length coefficient A’ (107> m s7°)
u, -1.9| -1.6| -1.2| -0.8| -0.4 0.0 0.3
10.5 0 17 16 66 114 46 3
11.5 1 22 18 79 87 70 6
12.5 2 21 24 65 81 56 9
13.5 3 19 22 50 67 64 3
14.5 1 13 12 28 61 69 4
15.5 0 2 5 11 41 85 8
16.5 0 1 4 5 20 39 6
17.5 0 1 1 17 27 39 2
18.5 0 0 3 9 13 34 4
19.5 0 0 0 4 19 25 3
20.4 0 0 0 3 13 15 7
21.6 0 0 0 0 2 5 2
22.6 0 0 0 0 1 8 1
23.3 0 0 0 0 1 5 0
24.6 0 0 0 0 0 4 0
25.8 0 0 0 0 0 3 0

Table 3.1B As Table 3.1A, but for the PQS set of data (522

periods).
M-O0 length coefficient X’ (107> m s7?%)
u, -1.9| -1.6| -1.2| -0.8]| -0.4 0.0 0.3
14.6 0 3 7 3 31 41 3
15.5 0 2 5 6 31 71 6
16.5 0 1 3 2 20 33 7
17.5 0 0 0 10 26 35 2
18.5 0 0 3 7 13 33 4
19.5 0 0 0 3 21 25 3
20.4 0 0 0 1 12 13 7
21.6 0 0 0 0 1 4 2
22.6 0 0 0 0 1 8 1
23.3 0 0 0 0 0 5 0
24.6 0 0 0 0 0 4 0
25.8 0 0 0 0 0 3 0
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Table 3.1C As Table 3.1A, but for the QS set of data (370
periods).

M-0 length coefficient X’ (107> m s°)
w, | -1.9| -1.6| -1.2| -0.8f -0.4] 0.0 0.3
14.6 0 3 3 2 22 30 1
15.5 0 2 3 2 22 62 3
16.5 0 1 2 1 14 24 4
17.5 0 0 0 7 19 23 2
18.5 0 0 3 6 8 17 2
19.5 0 0 0 2 15 17 2
20.4 0 0 0 1 6 8 7
21.5 0 0 0 0 0 3 2
22.6 0 0 0 0 0 7 1
23.3 0 0 0 0 0 4 0
24.6 0 0 0 0 0 4 0
25.8 0 0 0 0 0 3 0

The model value of the quantity Q for the cell No. i is denoted F;. It is calculated for
the mean value of u_and X’ in the cell. The goodness of fit for the particular model is
then indicated by the quantity

Z=1IW,[M,-FJ (3a)
W, = N,/ <o’>y. = (o))" (3b)

In calculating the weights W,, Uiz is averaged over the X\’-classes, as indicated, in order to
reduce the statistical fluctuations (the dependence on X’ is normally not very strong). The
quantity o, as defined by Eq. (2), represents an estimate for the standard deviation of the
individual values Q within the variable cell i. W, will then represent an estimate of the
inverse square of the standard deviation of the cell mean value M; of the quantity being
analysed. Thus the sum defined in Eq. (3a) is expected to have elements with an average
value of the order of 1 and a total value of the order of # cells.

In the analysis discussed in the remaining sections of this report, parameters in the
models are normally fitted by minimalizing the sum Z defined by Eq.(3). The minimum
can be taken as an estimate of the X’ value of the fit,

x> = Minimum ( Z ) 4)

For a perfect model, the value of x* is expected to be close to the number of degrees of
freedom, N, . if N, is large. In our case,

N, =N.-1-N, (5)
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where N_ is # cells, and N is # parameters being fitted.
This least squares minimalization is performed by a specially constructed routine, that

handles both linear and non linear parameter dependence very efficiently.
A x° - test may also be performed on a completely established theory with no

adjustable parameters. Then x? = Z (from Eq. 3a), and N, = N - 1.
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4. SUBTASK 4.1: WIND SPEED PROFILES

4.1 Near neutral profiles

In the SoW, near neutral is defined as conditions when the air - sea temperature
difference satisfy

AT =T, -T 3.0 < 0T < 00K (H

air sea’
Data for periods satisfying this criterion are analysed in this section. In discussing the
logarithmic profile combined with the Charnock relation in subsection 4.1-M4 below, a
different selection criterion in terms of the Monin-Obukhov length scale parameter X\’ is
introduced. The indication is that

| x| <210° ms?
gives a somewhat better selection for neutral stability.

4.1-M1: Standard power law profile

The power law profile is defined as
uz) /uz) =1z/z]" ()

As discussed in Andersen et al. (1991), the power law is not a very good candidate for
describing our data. Plots of the observed wind speed ratios (with standard deviations to
indicate the spread) for the ”near neutral data”, a best fit of Eq. (2) to the data, and Eq.
(2) for the exponent values a = 0.09, 0.10, 0.11 and 0.12 are shown in Fig. 4.1-M1. The
best fit corresponds to a = 0.0867.

The striking feature of the data is an increasing value of the wind speed ratio with
reference wind speed, a property not accounted for by the power law with a constant
exponent. A more subtle feature is that the power law predicts too rapid growth of the
wind speed ratio vs. the height z, and this makes the logarithmic law a potentially better
candidate for modifications.

In the literature, cmp. OJA-R Table 2.1.1, a range of values for the exponent a from
0.09 to 0.19 is suggested. In Table 4.1.1, Z values (as defined by Eq. 3.3a) are shown for
representative values of a in the same range. As is seen, Z is increasing rapidly, as the
exponent value is increased from the Isq. fit value. All Z values are much too large for a
statistically acceptable description. which is also readily apparent from the plot. The value
a = 0.12 gives a larger wind speed ratio than any of the observed mean values for heights
above 40 m.
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Table 4.1.1 Z and % degrees of freedom for various values of the
exponent a when the power law, Eq. (2) is compared

to the "near neutral" data. a = 0.087 represent a
1sq. fit.
a 0.0877 0.09 0.10 0.11 0.12 0.15 0.19

x> or 2 1 990 2 072 4 303 9 664| 18 274| 64 828|180 192

N 46 47 47 47 47 47 47

free

The selected set of "near neutral data” is probably ”contaminated” by some data for
unstable conditions, as will be discussed in Sec. 4.2. However, all our analysis in this
project suggest that there is an increase of the wind speed ratio with wind speed for neutral
data. Therefore, if one wants to use the simple power law, Eq. (2), the exponent should
be chosen according to the wind speed regime and use in question.

4.1-M2: USGS power law profile

The USGS (1978) recommendation for Mexico-gulf conditions can be written

uz) /uz) =[(z-2)/(z- z)1"
3)
z.=22m a=0.1128

This model compared to the "near neutral” data is shown in Fig. 4.1-M2 as the dashed
line. The full drawn line is a lsq. fit to the data. Parameter values and x* values are
shown in Table 4.1.2.

Table 4.1.2 x* and % degrees of freedom for the USGS version of
the power law. Values corresponding to the original
parameters and for a least squares fit to the "near
neutral” data are shown.

Parameter set a z_/m X N¢reo
USGS 0.1128 2.20 28 220 47
Least squ. fit 0.0613 5.14 1 519 45
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The least squares fit is somewhat better than for the standard power law, as the z-
dependence of the wind speed ratio is better described with this model with an extra
parameter. But the fit is still far from acceptable statistically, as the model does not allow
for a wind speed dependence of the ratio.

The USGS parameter set seems to be relevant for wind speeds approaching 30 m/s, or
design winds.

4.1-M3: Ishizaki power law profile

For typhoon design conditions, Ishizaki (1983) has proposed the following law
uz) /u(l5m) = [z / 15m]" n = 1/Inu(15m) 4)

The reference height was originally assumed to be 15 m. Assuming this model to be valid
down to 10 m, and using the law to calculate the value of the exponent expressed as a
function of the our standard reference wind speed u, = u(z,), z, = 10.5 m, we get

uz) /u@z) =[z/z])
(5
a=2/{lnuy +[(nu) + 4In(15m/z,)]* }

As is apparent from both the above equations, a power law exponent is predicted which
decreases with wind speed, quite contrary to what is prescribed by our data. The values of
the exponent for a set of wind speeds are shown in Table 4.1.3. A comparison to e.g. Fig.
4.1-M1 shows that the predicted values of the exponent are much to high.

The Ishizaki version of the power law thus appears to have little relevance when
compared to our data.

Table 4.1.3 Ishizaki power law profile - predicted exponent and
wind speed ratio at 46 m height (z, = 10.5 m).

u, (m/s) 15.0 20.0 25.0 30.0
a 0.353 0.322 0.301 0.285
u(46m)/u, 1.68 1.61 1.56 1.52
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4.1-M4: Standard logarithmic law profile

The logarithmic profile is defined as
uz) = (u/x) In (z/zy) (6)

where u, is the friction velocity, z, is the roughness length, and k is the Von Karman
constant, here assumed to be k = 0.4. As discussed in Andersen et al. (1991), it is
practical to rewrite this law as

uz)/u@z) =[1+aln@zz)] «=[I (z,/z)]" 7N

before fitting it to the data. A plot of the "near neutral data”, a least squares fit of Eq. (7)
to the data, and Eq. (7) for the coefficient values of o = 0.09, 0.10, 0.11 and 0.12 are
shown in Fig. 4.1-M4. The best fit corresponds to o« = 0.0927 and z, = 0.22 mm. The
corresponding values of z, and x> are given in Table 4.1.4. The value z, = 0.15 mm
suggested by Standing et al. (1990) as representative for offshore conditions corresponds,
to « = 0.0896 = 0.09. As may be seen, our fitted value is quite close to the Standing et
al. value.

Table 4.1.4 X or Z and # degrees of freedom for various values
of the coefficient a« when the logarithmic law, Eq.
(7) is compared to the "near neutral" data. a =
0.0927 represents a lsq. fit.

o 0.0896| 0.0927 0.10 0.11 0.12 0.13 0.15

z, (mm) | 0.150 0.217 0.477 1.18 2.52 4.79 13.4

z or x| 1 938 1 821 2 459 5 413 10 773| 18 537 41 281

Nypeo 47 46 47 47 47 47 47

Even the logarithmic model predicts a somewhat faster rise of the wind speed ratio
with z than exhibited by the "near neutral data”. Because of this, the USGS power law
model gives a better fit to the data than the present logarithmic model. However, this
should be considered fortuitous. Crudely speaking, our data represent only two
independent height ratios, 20/10 and 40+/10. A model using two parameters to fit the z-
dependence, will therefore always give an optimal fit to this data set. For large z-values,
however. the USGS model predicts a modified power law behaviour
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u@) /u@z) = 2"/ (z, -2z z>>12 | (8)

where p is the USGS model exponent. This asymtotic behaviour is not expected.

As with the other models discussed so far, the great problem of the present one is the
predicted constancy of the wind speed ratio with increasing wind speed. The comments
given at the end of Sec. 4.1-M1 will therefore apply in this case too.

4.1-M5: Logarithmic law with Charnock relation

The Charnock relation assumes that the roughness length z, increases with the square
of the friction wind velocity u,,

zo=(@/gu’ 9)

where a is Charnock’s constant and g is the gravitational acceleration. Combining Egs. (6)
and (9) for z = z_, we find a transcendental equation that can be used to determine u, from
the reference wind speed u,,

u =@ /x)In{z /[(a/g u*z]} (10)
This establishes u, as a function of u_, and thus the drag coefficient Cj,, defined by
u’ = Cpu 2 (11)

will also be a function of u..

Table 4.1.5 x> or 2z and degrees of freedom N, for the least
squares fit and for the selected set of values for
the Charnock constant a. "Near neutral"” data set.

a 0.00768 0.012 0.015 0.020 0.032
x> or 2 899 1 212 1 650 2 572 5 217
N, .. 46 47 a7 47 47

In the literature. cmp. OJA-R Table 2.3.2.2, a range of values for the Charnock
constant a from 0.0123 to 0.032 is suggested. In Fig. 4.1-M5.1, plots are shown of the
the wind speed ratio for the "near neutral” data and predictions from the logarithmic law
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with the Charnock relation, Egs. (6) and (9-10). Results are shown for a = 0.012, 0.015,
0.020 and 0.032, together with a least squares fit yielding a = 0.00768.

In Table 4.1.5. x* or Z values are shown for the same set of a-values. The Isq. fit is
much improved compared to the models discussed above, but it is still far from
satisfactory. This could be explained by the selection of the "near neutral” data by Eq.
(1), which most certainly will give an overweight of data for unstable conditions.
According to the Monin-Obukhov (M-O) theory, deviations from neutral conditions will be
scaled by

zZIL =z X u/u’ (12)

where the M-O coefficient X\’ may be defined in terms of the present data by Eq. (2.3).
Using Eq. (11), one gets

ZIL =z X 1 (C%? u?) (13)

indicating that the largest deviations are expected for large z-values and small values of u,.2.
Provided an overweight of unstable data as mentioned, the deviations seen in Fig. 4.1-
MS5.1 are quite compatible with this picture.

A new data selection was therefore made,

210%° < X' < 210° ms? (14)

The corresponding results are shown in Fig. 4.1-M5.2 and Table 4.1.6.

Table 4.1.6 x> or z and degrees of freedom N, for the least
squares fit and for the selected set of values for
the Charnock constant a. Data set limited by Eq.

(14)
a 0.01721 0.012 0.015 0.020 0.032
x? or 2 158 428 200 212 1 245
N, 46 47 47 47 47

We see that the fit with the more narrow data selection is much better. The number
of periods involved in the last fit is 567, and the mean value of X’ is
<)'> = - 0.03 10° ms™*. whereas the "near neutral” set contains 757 periods with a

corresponding mean value of X\’ of -3.25 10° ms?. Whereas the selection by Eq. (14)
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ensured a more truly neutral sample, and an estimate of Charnock constant in the main
ballpark, the unstable character of the "near neutral” set forced a rather low value of
Charnock constant, reflecting the very low value of z, pertinent to unstable data when

interpreted as neutral.
The Charnock relation implies that the the so called drag coefficient Cp, defined by

C, = (W./u)’ (15)
can be approximately representated as a linear function of u,,
Co=¢ tcGu (16)

A review of the values of the coefficients ¢, and c, found in the literature is given by OJA-
R, Table 2.3.3.2. From Eq. (15) and the logarithmic law, Eq. (7), it follows that the
coefficient « may be expressed as

a = (Cp)* /«x (17)

A fit to the neutral data set limited by Eq. (14), using the logarithmic law and the
representations given by Eqgs. (16-17), gives the result

c, =5.2610%, ¢, =7.7910°, x* =123, N; =45 (18)

A comparison of this fit with the fit based directly on the Charnock relation discussed
above, and with the polynomial expansion of « in u, is shown in Fig. 4.1-M5.3

4.1-M6: NPD (1988) logarithmic law profile

The NPD (1988) version of the logarithmic law,
u(z) /u(z,) =[1 + 0.15 In(z/z,)) (15)

is a special version of Eq. (7) with a = 0.15. A comparison to the near neutral data is
shown in Fig. 4.1-M6. The corresponding statistical results are included in Table 4.1.4.
This prescription gives a very conservative estimate for design purposes.

4.1-M7: Ad hoc logarithmic law profile

From Fig. 4.1-M5.2, where the data were selected according to Eq. (14). it may be
seen that both the data and the fit of the logarithmic law with the Charnock relation,
suggest that the characteristic coefficient, «. has a close to linear dependence on the
reference wind speed. One may then as well take this as a starting point of a model, e.g.
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u@z)/uz,) =[1+« In(z/z,)]
(16)

oz=c>L0+0L1x-i-c>L2x2 x =u/10 - 1

where u_ = 10 (m/s) was taken as a reference point for the expansion. Also a second order
term was included. One may also arrive at such a relation from the Charnock relation by
performing a chain of expansions through the pertinent formulae, Egs. (7), (9) and (11).
Since the experiments are our prime guidance in any case, a free fit of Eq. (16) to the data
was performed giving the result

oy = 0.0903, o, = 0.0263, «, = 0.00242, x> =123, N; =44 17

This fit to the neutral data is as good as that obtained with the linearized Charnock
constant, Eqs. (16-18). A plot is shown in Fig. 4.1-M7. Comparing to Fig. 4.1-M5.2, it
is seen that the present result implies a slightly stronger linear rise than the with the
Charnock relation, but the two fits are very close.

4.2 Extended logarithmic description for general stability

The extension of the logarithmic law Eq. (6) to apply to a wider range of stability
conditions is within the M-O theory conventionally written as

u(z) = (u/x) [ In (z/zy) - v, (z/L) ] (1)
where the function v, depends on the atmospheric stability according to

v.z/L) = In[(1 + X)* (1 + X*)/8] -2 tan’(X) - n/2, z/L >0,

m

2)
X=1[1-v,z/L]"
for unstable conditions, and
v, (z/L) = - B,, z/L, zIL < 0 3)

for stable conditions. Using again the Charnock relation, the transcendental relation from
which the friction velocity u, may be determined will now be

u = (u,/ x) {In[(g z)/(a u*z)] -y, (z,/L)} 4)

Thus. in view of Eq. (4.1.12). the friction velocity is stability dependent and is determined
for each v class by fitting Eq. (4) to the reference wind speed data.
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The wind speed ratio follows from Eq. (1),
u@)/u(z,) = [ In (z/zy) - v, (z/L) 1/ [ In (z,/zy) - v,,(z,/L) ] %)

where z, through the Charnock relation depends both on wind speed and stability.

As discussed in Chapter 3, and shown in Table 3.1, the data have been divided into 9
stability classes. In Figs. 4.2.1 - 3, the observed values of the wind speed ratio is
compared to the model for the three height ratios available. In the plots, mean, weighted
results are given for 4 stability ranges. The weight used is simply # events in the
respective u_ - X’ classes involved. The stability classes in the plots are defined in Table
4.2.1.

Results are given both for the standard parameter set, and for a least squares fit when
the values of a, 8, and v, are taken as variables. In Fig. 4.2.4 - 6, the corresponding
material is shown for the PQS data set. The plot (and fit) now running from 14 m/s. The
results for the QS data are shown in Fig. 4.2.7 - 9. In this case the least squares fit did
not converge inside the boundaries specified, but reached the value 8, = 1 which was
specified as the lower limit on this parameter. The resulting values of x* and the
parameters are given in Table 4.2.1. The total number of periods, N, in each of the data
sets are also indicated.

Table 4.2.1 Stability classes used in the plots related to the
classes used in the fits.

Plot notation Fit class(es) |Range 10 *ms™?
Stable 8 - 9 0.0 to 0.6
Neutrl 7 -0.3 to 0.0
Unstab 5 -6 -0.9 to -0.3
S.Unst 1 -4 -2.1 to -0.9

The trends in the data show some inconsistencies with increasing wind speed, which
partly may be due to the way the M-O length L is estimated here. There are also rather
few data for wind speeds u, > 20 m/s. But on the whole, the present model seems to give
a reasonable description of the data.
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Table 4.2.2 X

2

and #
logarithmic law description, Eq.
standard parameters and 1lsq. fits to the full, the
PQS and the QS data sets are given.

degrees

freedom N
(5).

for

the
Results for

Data Paramet. a Bn Yn X2 N,

All std. .0144 4.80 15.20 1002 287
N = 1717 |Lsq. fit .0178 3.64 17.48 852 284

PQS std. .0144 4.80 15.20 720 167
N = 522 |Lsqg. fit .0202 1.69 17.47 461 167

Qs std. .0144 4.80 15.20 804 158
N = 376 |Lsg. fit| 0.0227 1.00 22.14 502 155
4.3 The inertial-dissipation method to determine ux

This is an alternative method to determine u, and, at least in principle, z/L from the
spectral turbulence energy function S(f). The method is supposedly valid in the
intermediate high frequency range where both dissipation and production of turbulent
energy is assumed to be small. In the discussion below we will, however, question if such
a region exists for unstable atmospheric conditions and maritime wind.

Based on the references given in the literature review by Andersen (1991),
the spectral function in the intermediate region may be written

S(f) = « u,? Bz/L) [2 1 k z/u(z)] £ (1)

where the recommended value of the constant o is 0.5.
(denoted ¢ ¢ 23 in Andersen (1991)) is given by

The stability dependent factor

Bz/L) = 1 + X |z/L|*? | (2a)

z/L < 0 (unstable conditions)

\ = { ) (2b)
z/L > 0 (stable conditions)

Thus B has a minimum 8 = 1 for neutral stability.
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The spectral turbulence data and the spectral function S(f) are discussed in the main
report and in Chapter 7 of the present report. The characteristic feature in the inertial
subrange is the f 3 dependence of S(f). Judging from the experimental data for neutral
stability displayed in e.g. Fig. 7.2-M3, the f 53_dependence is seen to be approximately
valid only for the very highest frequencies. This part of the spectrum has not been
focussed in the present project, and we will first discuss some corrections due to aliasing
and the method of observation.

We will first discuss the high frequency corrections, and then combine the results with
the Kaimal spectral model, which has the correct asymptotic behaviour, to determine u,, as
defined by Eq. (1).

4.3.1 Spectral corrections near the Nyquist frequency

The aliasing effect is due to the fact that when a digital Fourier transform (DFT) is
made, energy from frequencies above those involved in the transform will contribute near
the top of the frequency range. Thus the DFT coefficients in this region will contain
contribution from the region above the Nyquist frequency. With a model for S(f),
however, both this effect and the effect of averaging in the measurment process can be
accounted for. By comparing a corrected DFT spectrum to the experimental results,
parameters in the model can be adjusted by a least squares fit. The model will then define
the inertial subrange behaviour, if necessary, by extrapolation.

In the present project, the elements in the observed time series, X, X,, .. are defined
by an integral over the time dependent quantity X(t) in question,

t
x, = (1/8) tJ+X(t)dt k=1,2,..N t,=ka; t=(k-1)a 3)

where & is the time interval between the loggings, related to the period T by
T = Na, = 40 min. N = 2048 4)

N is the number of loggings in each period. We assume that X(t) is periodic and defined
by an infinite Fourier series,

X(t) = ¢ {A cos(wt) + B sin(wjt)} w=2nj/T (5)
j=1
If continuous observations of X(t) were available over a sufficient set of periods, the
ensemble mean square of the coefficients in this expansion would be related to S(f) by

Sf) = (T/2) < Al + Bl > f=3/T (6)
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By DFT, the observed time series x, may also be used to define a continuous time
function,

M
x(t) = I {acos(wt) + bysin(wt)} w =2mn j/T M=N/2-1 )
j=1

This function will satisfy
x(t) =x  t =&+ %o (3)

provided the coefficients a and b, are defined by

N N
a = (2/N) T x, cos(w; t,) b, = (2/N) k):lxk sin(w; t,) &)
k=1 _
In a simplified approach, the coefficients defined this way are identified with A; and B,
appearing in Eq. (6) and used to estimate S(f). However, if Eqs.(3-5) are used to define x,
in terms of the coefficients A, B;, and Eq. (9) subsequently is used to estimate a, b;, the
following result is obtained,

<a® +b7> = [siny; / ] {147 + BY] + (A + ByJ1 /0 - v’ )
10).
Y =j1'I/N

The siny/y; term is due to the averaging implied in Eq. (3), whereas the Ay, By terms
constitute the so called aliasing effect (in principle, also higher order at v; + 2n etc. will
enter. but their contribution is negligible). Using Eq. (6), (10) may be rewritten as

5 X 2 [sirw.]2 £’
<a’ +b'> = ——"T 5 {S(fj)+ —J———f 2S(fL-fj) } f=1/a (1)
Yj L™

where f, is the logging frequency (twice the Nyquist frequency fy,)- Thus, near the upper
end of the spectrum, S(f) is not directly observable. If a model for S(f) is used, the mean
values of the successive sums of squares of the coefficients a and b can be calculated from
Eq. (11). This prediction can be compared to the corresponding quantity evaluated from
the experimental time series by Eq. (9). By a least squares fit, parameters in the model
can then be adjusted in the ordinary way.

In the intermediate region where Eq. (1) is valid, (11) may be written as

2 [siny ] S(f)

f11/3
<a’ +b'> = {1+—L— } f=1/8 (12)

T sz (f]_ _ f;) 11/3

At the Nyquist frequency, both Egs. (11) and (12) simplify to
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16
T n’

<a’ +b’> = S(fy,) j=N/2 (andj<N/2) (13)
An uncorrected estimate by Eq. (6) in a narrow frequency band close to fy, would therefore
give a value a factor n?/8 = 1.23 too large.

Only b, can be evaluated by DFT for j = N/2. However, in a practical situation, this
is not very important if N is large. To reduce the the observational variance, an average
over j values close to N/2 is usually done to evaluate the lhs. of the above equation.

The spectral function in the inertial subrange has a frequency dependence
defined by (1), and will be denoted Si(f), to separate it from the spectral functions valid in
the range 0.001 - 0.43 Hz generally discussed in the present project. If Sig is known, it
follows from Eq. (1) that u, is given as

-5/
£ as

w? = S [2 1 k 2u@)]*”? £ / [« B(z/L)] (14)

Our approach will be to assume that S;q can be found as the high frequency limit from S(f)
which is determined by a fit to our spectral data in the range 0.1 - 0.43 Hz,

Sis() = lim S(f) (15)

fre

4.3.2 Neutral thermal stability

Various spectral models are discussed in Chapter 7 of this report. Limiting the choice
to those having the explicite u, dependence and high frequency limit defined by Eq. (1),
the best fitting one is the Kaimal model

f S(f) 105 C x
= 3 x = f z/u(z) (16)
u, (B + 33 x)

In the original formulation, B = C = 1. A least squares fit to the complete set of neutral
data, discussed in Sec. 7.2-M3, yields B = 0.444 and C = 0.680 when the Charnock
relation with a = 0.0172 (Table 4.1.6) is used to calculate u,. Fitting to the neutral data
for f > 0.1 Hz, with the alias and averaging corrections implied by Eq. (10) taken into
account, gives the following result,

C =0.897, B =0.740, x’ =3464, N; = 381 (17)
From a statistical point of view the fit is not very good, and is shown in Fig. 3.4.1. The

main problem is the z-dependence. however, more than the f-dependence.
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Judging from the plot, this model describes the data reasonably well in the high
frequency limit for u, > 20 m/s and z > 20 m. Expanding the model for high frequencies

one gets
£S(F) =105 Cu’x/(33%% [1-(5/3) (B/33%) - ]
(18)
£S(f) =0.277u’x*? =S4
Thus S(f) = S;5(f) provided
x = f z/u(z) >> (5/3)B/33 = 0.037 (19)

The asymptotic region is closest for high z and low u values. Comparing Eqgs. 1 and 18,
« = 0277 2 n k) =0.51 (20)

which probably is well within the error limit of the quoted value of « = 0.5. Thus the
profile fit determination of u, based on the logarithmic law and the Charnock relation with
the parameter a = 0.0172 (Sec. 4.1-MS5), gives a very good agreement with the inertial
dissipation method.

Using the linear fit to the drag coefficient to determine u., as defined in Eqgs. (4.1.15-
18). gives a slightly worse fit to the data for f > 0.1 Hz, and « = 0.52.

Concluding. the method used above allow us to correct for aliasing effects and to
extrapolate cleanly to the asymptotic region where the S(f) is proportional to £°°, In the
neutral case, the value of u, defined by the inertial dissipation method agrees very well
with the results obtained in Section 4.1-MS5 based on the logarithmic law and the Charnock
relation.

4.3.3 General thermal stability

In the main report (p. 64) it was observed that the maritime turbulence spectra showed
a "cross over” feature. For frequencies below 0.01 Hz, the turbulence is highest for
unstable conditions, for frequencies above this value, and for the frequency range in
question here, the turbulence is generally higher for stable conditions. This was
interpreted as a cleaning effect, the large scale turbulence taking place for unstable
conditions sweeps away the small scale turbulence generated from the ground. This
mechanism will reduce the turbulence, and thus violate the underlying condition for Eq.
(1). At Skipheia, this feature was only observed for the maritime sector.

With corrections for aliasing and averaging, the spectral data for f > 0.1 Hz were
compared to the following spectral function.
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fS 105 C x B(z/L)
® = ( \ x = f z/u(z) (20
u,’ [ B exp( -y z/L) + 33 x] St

where B(z/L) is defined by Eq. (2a), and u, and L were determined from tne profile fit
using the Charnock relation with a = 0.0172 and the generalized logarithmic law as
described in Sec. 4.2. The above equation will reduce to Eq. (16) for neutral data. The
B-term in the denominator was given an ad hoc multiplier which in a general way will
satisfy the known dependence of the spectral maximum on z/L.

A least squares fit gave the results

C = 0.844, B = 0.683, vy = 1.31, X, = 1.18,
A =-0.122, x* = 21503, N; = 2298 (22)

The resulting fit is compared to the averaged Sletringen data for 42 and 46 m in Fig.
4.3.2, and to data for 20 and 10 m in Figs. 4.3.3-4.

Calculating the value of « appearing in Eq. (1) from the above results in the same way
as in Sec. 4.3.3, one gets

« = 0.48 23)

This is in reasonable agreement with the conventional value. The fit is not very good,
however. From the general dependence of the wind speed profiles on stability, we know
that for a given value of u_, u, will increase with increasing instability. Experimentally,
however, S(f) decreases at high frequencies with increasing instability, at least from 20 m
and up. as discussed in the beginning of the present section. This explains the negative
value of X- from the fit, in contradiction to Eq. (2a).

4.3.4 Conclusion

It has been shown that the inertial dissipation method will work well as an
independent way to determine u, for neutral stability data. Good agreement is obtained
with the results for u, found in fitting the wind speed profile to the logarithmic law and the
Charnock relation. ‘

To use the method, data for S(f), u(z) and the air - sea temperature difference must in
general be present. S(f) must be determind in the inertial frequency region or as a limit
from a lower frequency region, as defined by Eq. (18 - 19) for neutral data. The relative
value of the first order correction term to the inertial subrange value S;g was found to be
0.037 u(z) / (f z), thus the frequency must typically be of the order of 1 Hz to be in the
relevant subrange.

For general stabilty, new values X, = 1.18 and \_ = -0.122 had to be introduced in
the definition of B(z/L). Eq. (2), in order to obtain agreement with the determination of u,
and L from the wind speed profile data discussed in Sec. 4.2.
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With the limitation mentioned, the inertial subrange method to determine u, seems to
work well. Care must be taken, however, to include possible correction terms, dependent
on the measurement strategy, to the high frequency end of the DFT spectra.

An indepeendet determination of z/L by the inertial subrange method does not seem to

be possible for maritime data.
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5. SUBTASK 4.2: TURBULENCE INTENSITY

Turbulence intensity is defined as the ratio between the r.m.s. value of the
longitudinal wind speed fluctuations and the mean wind speed, both at height z,

I,(z) = o(z) / u(2) (1

The values of I (z) presented here are calculated from the filtered time series, as described

in Sec. 2.

5.1 Near-neutral conditions

It was observed in Sec. 4. that the two types of near-neutral data set investigated lead
to slightly different results. The first of these data set was defined according to a limit on
the air - sea temperature difference, Eq. (4.1.1), and was found to be biased towards
unstable conditions with <X\’> = - 3.25 10° m/s’. The "truly” neutral data, selected
according to a condition on X', had a corresponding mean value of 0.03 10° m/s.
Turbulence intensity do in general depend less on stability than the wind speed profile.
The data set used for a particular comparison will be stated.

5.1-M1: The modified Vickery (1983) model
Vickery (1983) proposed the simple model
I,(z) = 0.10 (z/80m)"? [u(80m)/(50m/s)]* )

i.e. a model using wind speed at 80 m as a reference. Since this is outside the height
range of the present study, we will base the fit on the corresponding model using z, = 10
m as reference height and u, = 10 m/s as a normalizing wind speed (this choice should
make translation to other wind speeds as convenient as possible). What we have called the
modified Vickery model will then be

1,2) = l(z,.u,) (z/z)" [u(z)/uel® .  u, = 10 m/s 3)
where 1(z,,u,,). a and b are parameters to be fitted from the data. A least squares fit to
this model is compared to the "near” neutral data in Fig. 5.1-M1, and is seen to give a
reasonable fit with the following characterizing values:

I(z.ug) = 0.089, a =0.226, b =0.350, x’ =172, N;= 60 (4)

The qualitative properties of turbulence intensity are an increase with wind speed, and a
decrease with height. Both these properties are exhibited by this model.
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5.1-M2: The modified Standing (1990) model

The Standing model is also based on observations at 80 m height as a reference,
I,(z) = 1,(80m) u(80m)/u(z) 5

and is supposed to be valid for the height range 40 - 80 m. As in the case of the Vickery
model, we want to rewrite this model using z, = 10 m as reference height,

I,(z) = 1,(z) u(z) / u(z) (6)

where 1 (z,) is taken as a parameter multiplying the inverse wind speed ratio. The wind
speed ratio was in Sec. 4.1-M5 found to follow closely the logarithmic law with
Charnock’s relation. Using this, and allowing for a power-law dependency on the wind
speed ratio, the revised model reads

1.(z) = 1,(z) (In(z,/zg) / In@z/z)]" 2z = (ac,/®) u,’ (7)

A comparison of this model to the experimental "truly” neutral data is shown in Fig. 5.1-
M2. using the corresponding best fit value for the Charnock constant, ac, = 0.0172 (Table
4.1.6) and calculating u, from the logarithmic profile subject to the Charnock relation
(Sec.4.1-M5). The resulting values for the model parameters and statistical quantities were

I(z) = 0.103. a =242, x’ =2953. N;=6l (8)

The modified model was able to follow the z-dependence of the data, but this resulted in a
high value of the exponent a. The model is not able to fit both the observed z- and u -
dependence of the turbulence intensity, and is therefore incompatible with our data.

Depending on the wind speed range chosen, the absolute value of the turbulence
intensity at 80 m, I,(80m) = 0.07 - 0.075, as recommended by Standing (1990), is
compatible with an extrapolation of our data with height, using e.g. the modified Vickery
model, Egs. (3-4).

5.1-M3: The Ishizaki (1983) typhoon model

For the maximum turbulence intensity in typhoons, Ishizaki (1983) found

I,(z) = 0.6 /In u(z) =

0.20 u(z) = 20 m/s
{

0.17 u(z) = 30 m/s

The concept of "maximum turbulence intensity” is not defined.
An examination of the distribution of turbulence intensity values was not included in
this extension of the project. However, in the main part of the project. the cumulative
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distributions of turbulence intensity were examined. For example, the value 1,4, which
was exceeded by 1 % of the observations, was found to be stability dependent, and to
decrease with wind speed for neutral and unstable atmospheric stability in the wind speed
region 10 - 22 m/s where sufficient data were available. The observed decrease with wind
speed for these two stability classes is in qualitative agreement with Ishizaki’s relation. For
stable conditions. the (extrapolated) I,,, value seemed to increase with wind speed, and
that may very well be the case for an overall value for wind speeds of 30 m/s and beyond.
As a conclusion, Ishizaki’s relation is found to be too unspecific to be of much

practical value.

5.1-Md4: The Naito (1983) data

Naito (1983) found that

1@ =

0.089 u < 12 m/s
{ forz = 6.4 m (10)

0.11 u> 12m/s

Certainly, our data do not indicate a step function at u = 12 m/s. Using the modified
Vickery model. Eqgs. (3-4), to extrapolate down to 6.3 m, and taking u. = 10 and 15 m/s
as typical values for the indicated ranges, we find

10 m/s

forz = 6.4 m (1

0.0995 u,
I,(z) ={

0.114 u 15 m/s

r

which is in reasonable agreement with the Naito results.

5.1-M5: ESDU model

The ESDU (1982) model is stated to be valid for strong winds and neutral conditions,
and may be written

u. an[b+cln(z/z)]”
1,2) = (12)
u 1 + dIn [ u/(f, z)]

n=1-z/h

p=n16

h=u/@6f), f=13110"s"
where a, b. ¢ and d are parameters and f, is the Coriolis frequency with the Sletringen
value indicated. The ratio u,/u will here be evaluated using the logarithmic law with the

Charnock relation as discussed in Sec. 4.1-M5. A comparison of the model with the
"truly” neutral data is shown in Fig. 5.1-MS5. using the best fit value ac, = 0.0172 for the
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Charnock constant (Table 4.1.6). The full line represents a fit to the data, the dashed line
represents the original parameters given by ESDU, except that the normalizing parameter a
is fitted causing the value to be reduced by 16%. This fitting is done since the filtering
procedure applied to out data will reduce the turbulence intensity somewhat. The original
value was a = 7.5. The parameter values are given in Table 5.1.1. Note that the free fit
leads to a completely different structure of the model, the denominator being reduced to 1,
and the ¢ parameter changing sign.

Table 5.1.1 Parameter values for the ESDU model, Eq. (12),
original set (a value renormalized) and least
squares fit, both with x2 value and degrees of
freedom, N..

Para. set a b c d X’ N,
ESDU"’ 6.32 0.538 0.09 0.156 600 62
Lsq. fit 2.00 1.85 -0.060 | 2 107" 201 59

5.1-M6: Ad hoc model I

Looking at Fig. 5.1-M1 with the "near” neutral data, or Fig. 5.1-M2 with the "truly”
neutral data, it is apparent that the u, dependence may be fitted very well by a straight line
at all heights. A fit to the model

1,z) =[1, + 1, u](@/z)"* (13)
gives the following parameter values and fit characteristics
I, = 0.0601, I, = 0.0026 s/m, a = -0.218, x> = 168, N; = 60 (14)

Replacing u, by u" in Eq. (13), a least squares fit yields the value n = 1.02 for the
exponent, with no significant improvement of the fit. Thus the data suggest a truly linear
rise of the turbulence intensity with wind speed, and a power law type decrease with
height, as indicated by Eqs. (13 - 14). The resulting fit is shown in Fig. 5.1-M6.

5.1-M7: Ad hoc model II - "a la Cp”

Although the model Eq. (13) subject to Eq. (14) predicts a linear increase with
reference wind speed u.. the data do not exclude a curvature in the 1, - u, relationship. as
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e.g. indicated by the modified Vickery model Eq. (1) and seen at high wind speeds in Fig.
5.1.

A model which is consistent with the Charnock relation, and which corresponds to a
curvature in the I, - u, relationship can be formulated as follcws:

g u [¢) u U* (¢ u Ur U*

Iu(z) = — = ————— = (15)
u(z) u, u(z) u. uz) u

Whereas many boundary layer studies indicate the first factor in the rightmost product to
be a constant with values in the range 2.1 - 2.6 (O.J. Andersen, Task 1 report, Sec. 5), the
second factor decreases essentially with height. The third factor equals the square root of
the drag coefficient. As discussed in the Task 1 report, the drag coefficient may in
reasonable agreement with the Charnock relation be written as a linear function of u,,

Cp,b=A+Bu, (16)
Thus. a relation on the form
I, =1, (z/z)*[1 +bu/10-1]" (17)

I, =1, (z=z_ .

u, = 10m/s)

is indicated by this discussion. Although the variation of u /u(z) with z was well described
in Sec. 4.1, a power law description was chosen here, in agreement with the model given
by Eqgs. (13-14). This of course is an indication that o /u. is not a constant.

A fit to the "truly” neutral data of the model Eq. (17) gives the following parameter
values and fit characteristics:

I, = 0.0848, a = 0.220. b =0.758. x = 177, N; = 60 (18)
The resulting fit is shown in Fig. 5.1-M7.

5.1.8 Comparison and extrapolation of the neutral models

In Fig. 5.1.8, a comparison is shown between the Vickery, the "ad hoc” (M6) and the
"a la Cp” (M7) models, all extrapolated to u, = 40 m/s. The "truly” neutral data are also
shown. As one may notice, there is really not much difference between the models in the
range covered by the data. There is an indication that the slope of the data versus u,
increases with z. more than predicted by the models. For this reason, the ad hoc model
should probably be used for a conservative extrapolation to high wind speeds for heights of
40 m and more.
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The model values at 30 and 40 m/s are shown in Table 5.1.2, together with the
statistical characteristics of the best fits to the "truly” neutral data.

Turbulence intensity at three heights predicted by
the three best fitting models at reference wind

speeds of 30 and 40 m/s.

Table 5.1.2

u, = 30 m/s u, = 40 m/s
Model X N, z=10m| z=20m| z=46m| z=10m| z=20m| z=46m
Vickery 186 60 0.1336/0.1153{0.0965]0.1508{0.1301|0.1089
Ad hoc 168 60 0.1381/0.1194|0.1001]0.1641}0.1418|0.1189
A la C, 177 60 0.1346]0.1161}0.0972}0.1535}0.1325(0.1109
5.2 General atmospheric stability

The ESDU model, Eq. (12), is not intended for use at general atmospheric stability,
although the quantities involved can of course be given a stability dependent definition

5.2-M1: Panofsky model

Panofsky (1977) suggests a relation supposedly valid for unstable atmospheric
conditions,

o,/u.=12-05(@L), L<0 (1)
where L is the Monin-Obukhov length. Using the M-O theory for the wind speed profile,
as described in Sec. 4.2, a corresponding model for the turbulence intensity becomes

I(z) =kal[l-b@L)]/[In(z/zy) - v,(z/L) ] )
A comparison of this model to the data with the normalizing parameter a fitted and b as
specified by Panofsky ( b = 0.5/12) is shown in Fig. 5.2-M1.1 for 3 stability classes with
L < O (unstable conditions). The classes are as specified in Table 4.2.1 ("Neutral” is

indeed slightly unstable, due to the cell division chosen). A corresponding least squares fit
is shown in Fig. 5.2-M1.2. The quantitative characteristics are summarized in Table 5.2.1.
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None of the fits are acceptable. Also, the lack of an adequate u-dependence, do in
the free fit case force a sign-change in the b parameter. In accordance with M-O theory,
the ratio z/L = z )J/(CDy2 urz) is used as the stability variable both in Egs. (1) and (2).
As u_ increases, this term will reduce I, corresponding to a smaller degree of dynamic
instability. However, in the neutral limit, the Panofsky model Eq. (1) is reduced to I, =
12 C,* u, / u(z). As discussed in Sec. 4.1-M5, Cp, increases with u.  But tis is not
sufficient to describe the full increase of I, since ratio u/u(z) decreases. From Fig. 5.2-
MI1.1, it is apparent that the original value of the b-parameter in the model gives a
qualitatively correct dependence on the stability parameter X'. Due to the inherently
incorrect u, dependence of this model, the u,-dependence of z/L causes a change of sign in
the b-parameter in the least square fit. This gives an improved dependence on u, which in
the fitting outweighs the resuling incorrect stability dependence.

Table 5.2.1 Parameters of the Panofsky model Eq. (2) for original
values (normalized) and a least squares fit. x2 and
degrees of freedom for the fits are also given.

Parameter set a b x’ N,
Panofsky (nor) 2.16 0.042 5 112 270
Least squ. fit 2.18 -0.100 4 907 269

5.2-M2: General ad hoc model

In Sec. 5.1-M6 a good description was found for the neutral data. In the neutral
limit, a model for general stability should be compatible with the neutral description. A
general model satisfying this criterion is

1) =[1, +1, u]@/z)[1-]_(zL) u/10m/s)° (z/z,)° ] 3)

where an extra term proportional to the traditional M-O variable z/L is included (see 5.1).
A test against the data shows that this stability term must be multiplied by a power of
(u/10m/s) and a power of (z/z) to get the correct reference wind speed and height
dependence. The scale factors were introduced to normalize the coefficient I, atu = 10
m/s and z = z. A least squares fit to the data is shown in Fig. 5.2-M2, where the
complete data set is included. During the fit, the X\’ region was divided into 7 classes of
width 0.4 10 m/s* to get the same neutral class as in the "truly” neutral data set. The
ranges for the plot is shown in Table 5.2.2.
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The fit did not depend very much on whether we took the first 3 parameters from the
corresponding fit of the “truly” neutral data, Egs. (5.1.13-14) or not. Keeping the
parameters defined in the neutral fit as before, the values of the extra parameters in Eq. (3)
were found to be

I, =126 b=152 ¢=0.85 4)
and the corresponding statistical parameters were
x* =752 N, =296 (5)

Statistically, the fit could have been better, but the main properties of the data are
reproduced by the model.

Table 5.2.2 Stability classes used in Fig. 5.2-M2.

Plot notation Fit class(es) |Range 10 *ms™?
Stable 7 0.0 to 0.4
Neutral 6 -0.2 to 0.2
Unstab 4 - 5 -1.0 to -0.2
S.Unst 1 -3 -2.2 to -1.0

When this model is extrapolated to u, = 40 m/s, the predicted values of the turbulence
intensity differs by some one per mille across the stability classes. For practical purposes,
the values of the "Ad hoc” model given in Table 5.1.2 may therefore be used at high wind
speed values even for this generalized model.
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6. SUBTASK 4.3: REFERENCE GUST FACTORS

The gust factor of wind speed at height z for a time interval t, is defined as the ratio
between the highest mean value over the interval and the period mean value

1 ty |
[”u(z,7) dt } (1)
ty uz) O

G(t,, T.z) = max {

The corresponding reference gust factor for a time interval t, is defined by comparison to
the reference mean wind speed,

1

t
G(t,.T.z) = max{ 6g u(z,t) dt } )

ty U,

Experimental data will be presented for the reference gust factor only. The evaluation has
been based on the filtered time series defined in Sec. 2.

The models and data to which the experimental data are going to be compared, are
however, defined for G rather than G,. From the above definitions,

G,(t,.T,z) = G(t,,T.z) [u() / v, ] 3)

The wind speed profile was in Sec. 4 quite successfully described using the logarithmic law
combined with the Charnock relation for neutral stability, and the M-O extension of this
law for general stability. These relations, with the Isq. fit parameters established in Sec. 4,
will therefore be used for the wind speed ratio in Eq. (3) to convert a model for G to a
model for G..

The time intervals (gust lengths) specified for the present investigation are given in
Table 6.1.1 together with the actual values used (they have to be a multiple of the
sampling period). The exact values of t, / T used in the models are also given.

Table 6.1 Length of gust intervals tg specified and used, and
exact value of t /T used.

t, specified 1l s 10 s 1 min 10 min
t, used 1.17 s 10.5 s 59.8 s 10 min
t,/T used 1,/2048 9,/2048 51,2048 1/4
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6.1 Near neutral conditions

In this section, the models are compared to the "truly” neutral data discussed in Sec.
4.1 and 5.1. their mean value of the M-O stability parameter was <X'> = 0.03 10°.
The wind speed ratio entering in (3) is supposed to be given by

u@)u, = 1 + aln(z/z), o =1/1In(z/z,) 4)
The Charnock relation with a5, = 0.0172 (Sec. 4.1-M5) is used to calculate z,.
6.1-M1: The Mackey et al. model

Mackey et al. (1970) have proposed

G(t,.T.z) = 1 - 0.62 1" In(t,/T) (5)

The aim is to obtain a model specifying a numerical value for G, rather than comparing
two quantities computed from the experimental data, here G and 1. In comparing Eq. (5)
to experimental data, therefore, the ad hoc model described in Sec. 5.1-M6 was used to
specify I,. Furthermore, it might be argued that both the absolute and relative dependence
on In(t,/T) may be influenced by the filtering process applied to the data in this
investigation. An extra constant multiplying I,. but independent of In(t,/T), was therefore
allowed. Using (3), the final expression for G, to be compared to the experimental data is

G,(t,.T.z) = [u(@) /u ] {1-[a+blnt/T)]L""} 6)

where Eq. (4) was used to calculate the wind speed ratio.
The resulting least squares fit is shown in Fig. 6.1-M1. The values of the fitted
parameters and the fit characteristics are

a=108 b=098 x’=1598 N, =253 (7)
If also the exponent on I, in (4) is allowed to vary in a least squares fit, a value not

significantly different from 1 is obtained. This model then coincides with the one discussed
next.

6.1-M2: The modified Mackey/Ishizaki model

Ishizaki (1983) proposed the relation
G(tg.T.z) =1-051, ln(tg/T) (8a)

I, = 0.6 /1In u(z) (8b)
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to describe extreme gusts during typhoons. The distribution of gust factor values was
discussed in the main project, but this topic has not been included in this project extension
(cmp. Sec 5.1-M3, where the similar situation for turbulence intensity was described).

As mentioned in the last section, fitting the exponent in the Mackey relation (5) results
in a model of the same general type as (8a), if I, is defined by the ad hoc model of Sec.
5.1-M6. From Fig. 6.1-M1 it is apparent that the dependence on the gust interval t, is not
well described by Eq. (6) for small values of to. The dependence on ln(tg/T) was therefore
generalized to second order, giving the model

G,(t,T.2) = [u@ /u 1 { 1 -[a+bIn(t/T) + c (n(t/T)* 11, } ©)

where I, and u(z)/u, are defined in the previous sections. The resulting least squares fit is
shown in Fig 6.1-M2. The fit is very close. The corresponding parameters and fit
characteristics are

a= 0.726. b=0.655 c=0.0188, x’ =668, N, =252 (10)

I, increases linearly with u, according to the ad hoc model (5.1.13) used to parameterize
I,. Also the wind speed ratio exhibits a close to linear rise (cmp. Fig. 4.1-M5).
Consequently, the rise of G, with u_ predicted by (10) is also very close to linear. This
feature is fully supported by the data. The fit parameters do not change significantly if the
wind speed ratio is calculated with the logarithmic law constant evaluated from the linear
fit of the drag coefficient, Eqgs. (4.1.16-18), instead of the Charnock relation.

6.1-M3: Thea + b ln(tg) relation

The gust factor data examined by Smith and Chandler (1987) followed very closely the
parameterization

G =a-blny (11b)
a = 1.325, b = 0.044 (11b)
where the parameter values (11b) correspond to a period T = 40 min, and neutral

stability. The corresponding reference gust factor will then be given as

G(t;.z) = [u) /u, ] [a-bln(y ] (12)
Eq. (4) was used to calculate the wind speed ratio. Note that the results (11) are based on
data at 10 m only and are independent of wind speed u,. The resulting least squares fit is
shown in Fig. 6.1-M3. The values of the fitted parameters and the fit characteristics are

a=1290. b=0.043. x’=4221 N, =253 (13)
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The parameters are very close to those of Smith and Chandler. Looking at Fig. 6.1-M3, it
is evident that this model does not reproduce the observed increase of G, with reference
wind speed. If only the data for u, > 15 m/s are considered, coefficients are obtained
which are even closer to the values (11b). However, since the model of Sec. 6.1-M2 gave
a very good fit to our data, and apparently reproduced all the systematic variations, both
with u,, z and t,, we do not see a need for further experimentation with the present model

(12).

6.1.4 Comparison to Table 4.2 of the Task 1 report

In Table 6.1.1A and 6.1.1B, results based on the model described in Sec. 6.1-M2 are
presented for the same heights and gust intervals as used in Table 4.2 of the Task 1 report
by Andersen (1991). Results up to u, = 40 m/s are presented. Please note that results for
wind speeds higher than 30 m/s and for the heights 80 and 150 m represent extrapolations
relative to the present data.

In Table 6.1.1A the results were converted to a one hour period, simply by using T =
3600 s in the model (9). The third column gives the wind speed ratio u(z)/u,.

In Table 6.1.1B the results are calculated for a time base of T = 40 min, whereas the
data in Table 4.2 in the Task 1 report are based on T = 1 h.

If data for 1 h periods are filtered the same way as in the persent investigation, much
of the increase of the gust factor normally expected for a longer base period T would be
taken out. But some increase is still expected.

As already discussed, our data suggest a linearly increasing gust factor with wind
speed, whereas a common view in the literature is that there is not much variation with
wind speed. When comparing to other data, both the preprocessing of the data and the
reference wind speed will be important. Both the removal of trend and the digital filtering
of harmonics with period longer than 10 min will reduce the gust factor compared to the
"normal” situation where none of these measures are applied. Also the length of the basic
period will enter. For comparison to "normal” data, where no or very little filtering is
done. we would expect that the values of Table 6.1.1A would be most relevant. If data for
a period of 1 h were processed by the same methods as used in this project, and all
harmonics with a period longer than 10 min were removed, one would not expect too much
change compared to the results for 40 the min periods, and in this case the data displayed
in Table 6.1.1B would be of relevance. Thus, the true case is expected to fall somewhere
in between the two tables.

Bearing the differences in mind when comparing to the data of Table 4.2 in the Task
1 report (T1-4.2). it is somewhat surprising that our estimates for the gustfactor in general
are higher than the values given in this table. We have observed a rather strong increase of
the reference gust factor with wind speed. Only the Exxon data (Entries C1, C2 and C3 in
T1-4.2) are given for a defined wind speed. The data in Table 6.1.1A (T1A) are 2 - 5 %
higher. with the greater differences for stronger wind and shorter gusts. The other entries
in T1-4.2 must as a default be supposed to be valid for design wind speed. If this is taken
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to be u, = 40 m/s, almost all data in T1-4.2 are lower than the T1A data, the best match
being the US Geological Service data (Entry E), which are some 4 % lower at 10 m
height, compatible at 40 m and 4 % higher than our (extrapolated) data at 150 m.

A plot of the reference gust factor based on Eqs. (9-10) is shown in Fig. 6.1.4 for the
height and wind speed range covered in the tables. Please bear in mind the extrapolation
in z and u, already mentioned.

Table 6.1.1A The reference gust factor versus height, wind speed
and length of gust interval. The results are based
on the model described by Egs. (9-10). Conversion
to a 1 h time base is done by wusing T = 3600 in
(9). See text for comments.

z u, u(z)/u, |G, 600s| G, 60s| G, 15s| G, 5s G, 3s
10.0 25.0 1.000 1.049 1.207 1.290 1.350 1.376
30.0 1.000 1.054 1.228 1.320 1.386 1.415

35.0 1.000 1.059 1.250 1.350 1.422 1.454

40.0 1.000 1.064 1.271 1.381 1.459 1.493

20.0 25.0 1.084 1.129 1.276 1.354 1.410 1.434
30.0 1.089 1.139 1.303 1.389 1.450 1.477

35.0 1.094 1.149 1.329 1.424 1.491 1.520

40.0 1.099 1.159 1.355 1.458 1.532 1.564

40.0 25.0 1.167 1.209 1.346 1.418 1.469 1.491
30.0 1.178 1.225 1.377 1.457 1.514 1.539

35.0 1.188 1.240 1.407 1.496 1.559 1.586

40.0 1.198 1.254 1.438 1.535 1.604 1.634

80.0 25.0 1.251 1.290 1.416 1.482 1.529 1.550
30.0 1.267 1.310 1.451 1.524 1.577 1.600

35.0 1.282 1.330 1.485 1.567 1.626 1.651

40.0 1.297 1.349 1.520 1.610 1.675 1.702

150.0 25.0 1.327 1.363 1.479 1.540 1.584 1.603
30.0 1.347 1.387 1.518 1.586 1.635 1.657

35.0 1.367 1.412 1.556 1.632 1.687 1.710

40.0 1.386 1.435 1.595 1.679 1.739 1.765
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Table 6.1.1B The reference gust factor versus height, wind speed
and length of gust interval. The results are based
on the model described by Egs. (9-10). Time base T
= 2400 s. See text for comments.

Gust interval (s)
Height| u, u(z)/u,

z (m)| (m/s) 600 60 15 5 3
10.0 25.0 1.000 1.018 1.181 1.267 1.328 1.355
30.0 1.000 1.020 1.200 1.294 1.363 1.392

35.0 1.000 1.022 1.218 1.322 1.397 1.429

40.0 1.000 1.024 1.237 1.350 1.431 1.466
20.0 25.0 1.084 1.101 1.252 1.332 1.390 1.415
30.0 1.089 1.108 1.276 1.365 1.428 1.456
35.0 1.094 1.115 1.299 1.397 1.467 1.497
40.0 1.099 1.122 1.323 1.429 1.506 1.539

40.0 25.0 1.167 1.183 1.323 1.398 1.451 1.474
30.0 1.178 1.195 1.352 1.434 1.493 1.519
35.0 1.188 1.207 1.380 1.471 1.536 1.564
40.0 1.198 1.219 1.408 1.507 1.579 1.610
80.0 25.0 1.251 1.266 1.395 1.463 1.512 1.533
30.0 1.267 1.283 1.427 1.504 1.558 1.582
35.0 1.282 1.300 | 1.460 1.544 1.605 1.631
40.0 1.297 1.316 1.492 1.585 1.652 1.680
150.0 25.0 1.327 1.340 1.460 1.523 1.568 1.588
30.0 1.347 1.362 1.496 1.567 1.618 1.640
35.0 1.367 1.384 1.532 1.611 1.667 1.692
40.0 1.386 1.405 1.568 1.655 1.717 1.744
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6.1.5 Comparison to Table 4.3 of the Task 1 report

The measured values of the gust factor from Table 4.3 in the Task 1 report are
reproduced in Table 6.1.2, together with values calculated from the model (9-10) for the
corresponding conditions. The wind speed ratio in Eq. (9) is of course excluded, since G
is involved rather than G, (cmp. Eq. 3). From the measured value of u(z) the
corresponding values of u, are given based on Eq. (4).

It is apparent from Table 6.1.2 that the measured values in hurricanes reported by
Georgiou et al. (1987) are much higher than indicated by the present investigation (Sec.
6.1-M2) for the heights and wind speeds in question. The primary reason for this is likely
to be the structural difference between hurricanes and extra tropical cyclones. But at the
same time it is an indication that for certain condition, higher gust values may be expected
than those given by the model defined in Egs. (9-10).

Table 6.1.1 Measured gust factors in hurricanes (Georgiou,
1987), first line in each row, compared to model
values based on Egs. (9-10), second line. The
values of the corresponding reference wind speed
are also given.

u(z) Gust intervals (s)

Hurricane|Level|(m/s) '
(m) u 60 15 5 3

r

97 25.3|1.17+40.06|1.20+£0.07]1.21+0.071.21+0.08

20.1 1.10 1.15 1.18 1.20
Danny 60 19.0/1.27+40.14]1.34+40.17]1.38+0.181.39+0.18
16.0 1.10 1.15 1.18 1.19

10 14.0{1.32+0.131.43+0.18]1.57+0.18]1.64+0.15

14.0 1.14 1.21 1.25 1.27

Juan 97 24.811.14+40,02|1.21+40.02)1.23+0.02}1.24+0.02
19.8 1.10 1.14 1.18 1.19
Camille 30 29.3 1.22 1.40 1.45 1.46
25.8 1.14 1.21 1.26 1.28
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6.2 Reference gust factor for general stability conditions

The model (6.1.9) gives a reasonable description of the reference gust factor for
general stability also, provided the wind speed ratio and turbulence intensity I, are
calculated by models with corresponding validity. Thus, the wind speed ratio is calculated
by the model discussed in Sec. 4.2, using the least squares fit parameters for the full data
set given in Table 4.2.2. The turbulence intensity is calculated by the model discussed in
Sec. 5.2-M2, Egs. (5.2.3-4). The resulting fits for the heights 10, 20 and 44 m (mean of
data for 42 and 46 m) are shown in Figs. 6.2.1-3 for the stability classes defined in Table
5.2.2. The corresponding parameters and fit characteristics are

a= 0803, b=0.732, c=0.0279, x* = 3562, Ny = 1196 (D

The properties of the observed reference gust factor at wind speeds below 15 m/s for the
strongly unstable and stable stability classes are not very well fitted by the model, in
particular that is true for the highest levels, cmp. Fig. 6.1.3. The high values for the
stable class are particularly interesting. Since this phenomenon is outside the scope of the
present investigation, it has not been further examined at this stage.
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7. SUBTASK 4.4: ONE-POINT TURBULENCE SPECTRA

7.1 Introductory remarks

We will in this chapter discuss some 17 models for one point turbulence spectra, and
their fit to the data. However, the parameters resulting from such a fit are dependent on
the way the fitting is done, and we will start by discussing two technical points.

By definition, the frequency integral of the turbulence spectrum is equal to the
variance, or the square of the total standard deviation, o, of the data considered. In Sec.
7.1.1 it is pointed out that the o defined in this way is not necessarily equal to the o
defined by turbulence intensity, which was discussed in Chapter 5.

Sec. 7.1.2 gives a brief presentation of how model parameters are determined from

the data in the present work.

7.1.1 On the definition of variance

The turbulence spectral function S(f) represents the turbulence energy density as a
function of the frequency f. When integrated over the full frequency range, the square of
the total standard deviation of the wind speed fluctuations is obtained;

=1 SHdf = [ fS@ dlin®)] (1)
0 0

Experimental data are usually displayed versus log(f) which gives constant resolution in
frequency on a relative scale (af/f). Thus, f S(f) is the relevant quantity to plot versus In(f)

or log(f).

In earlier sections, quite good representations of the turbulence intensity,

1,2) = o,(z) / u(2)
and the wind speed profile

u(z) / u,
were obtained. However, in the determination of turbulence intensity in Chapter 5, the
energy for frequencies below f, = (10 min)!' was explicitly removed. From the notion of a
spectral gap in the spectral range of (1h), one should perhaps expect

£S(f)» 0 when f»f,, f,=(10min)' =4/T, Q)

making the contribution to the integrals (1) negligible in the region below f,. Looking at
e.g. Fig. 7.2-MI. this is not seen to be true for our experimental data. Thus, S(fy) has an
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appreciable value, and the variance corresponding to the turbulence intensity must be
defined with a finite value § of the lower limit of integration in the spectral integral,

o (8 = [ S df, &= 3-4*T, = (6935)" )
)

(the exact value of & is complicated, as we go from summation to integration). To
illustrate this point, one may estimate the magnitude of the remainder

bo’ = o° - au(a)2

for an explicit spectral representation. The best one parameter representation for neutral
data discussed in Sec. 7.2 below turn out to be the Kaimal spectral representation which
may be written

f S(f) 2/3 A X
— = s x = fz/ u@@) (5a)
o [1 + AXx]

where A is the characteristic constant of the spectrum, being about 75 for our data and o
is defined by Eq. (1). An alternative, but equivalent formulation is

f S(f) Y
2 = 5/3 Y = f/fmax fmax = 1.5 U(Z)/(Z A) (Sb)
o [1 + 1.5v]
where f__ is the frequency where f S(f) has its maximum value. The fraction of the

variance below § may then be expressed as

8o’ ! 2 3 4
o [1 + 1.5 v,]

where v, = 8/f

max*

As an example, for u = 10 m/s and z = 46 m, one finds v, = 0.35
and Ac*/c® = 0.25 for our data. For higher wind speed values and lower heights, the
correction is smaller. The Kaimal model is compared to experimental data in Fig. 7.2-M3,
and appears to underestimate S(f) in the region f < §. Because of the direct z and u(z)
dependence of the correction, it will influence the analytical parameterization of the

variance in an essential way. Therefore, o, = I, u(z), evaluated as in Chapter 5, cannot

u
be used instead of o in normalized spectral formulations as Eq. (5). In the lack of an
independent determination, ¢ must be treated as an unknown function. But theories

relating ¢ to u, may be used, because u, is related to the mean wind speed profile.

7.1.2 How models are fitted to the experimental data

The experimental data for f S(f) presented here are calculated from the FFT-
coefficients of the wind speed time series of successive 40-min periods. Trends are
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removed by subtracting a 40-min moving average from the measured data, as discussed in
Sec. 2.

Ensemble averages of the data are calculated for each logarithmically spaced frequency
interval, each height and for classes of wind speed and stability. The spectral subdivision
is the same as described in Andersen et al. (1991), with three spectral intervals per factor
two in the frequency scale. The wind speed classes are of width 1 m/s in the range 10 to
26 m/s. The stability classification is discussed below.

In addition to the ensemble average value M, for each cell, a standard deviation o; is
also calculated in the standard way from the experimentally observed spread of the cell
values. The weight

W, =N/o’ f>f (7
W. =0 f < f,

where N, is the number of 40 min. periods included in the variable cell, is used in the least
squares fitting to estimate the parameters of the spectral model for S(f). An ad hoc
smoothing procedure is used to avoid undue statistical fluctuations in W; in cases where N;
is small. The x’-value defined as

x> = Minimum { £ W, [M, - S(fi)]2 } (8)

is used to indicate the goodness of fit. Experimental data for the 3 frequencies below f;
are thus assigned zero weight in the fitting, but are included in the plots shown below.

The spectral corrections discussed in Sec. 4.3.1 are applied to the models of S(f)
before comparison with the data.

7.2 Near-neutral conditions

As in the preceding sections, the criterion
| x| <210° m/s® (1

is used to select neutral data. This leaves us with 567 time series with u, > 10 m/s in the
maritime sector. As noted earlier, the mean value of X\’ for this selection is
<\'> = 3.42 107 ms?.

When u(z) or u, appear in the models for S(f), they are evaluated using the
logarithmic model in combination with the Charnock relation and the best fit parameters as
discussed in Sec. 4.1-MS5. If the linear u-fit of the drag coefficient, defined by Egs.
(4.1.15-18), is used to calculate u, and u(z), this does not significantly change neither the
fit nor the parameters.

- 53 -



7.2-M1: Harris’ model

Harris (1971) proposed the following spectral model

f S(f) 4Cx
= =fL/u(z), 1200<L < 1800m, B=C=1 (2)
u,’ 2B + x*)*®

where B and C are introduced as multipliers to the original parameters. In conjunction
with this formula, NPD has recommended

L = 1800 m, uw’=au’ a=310" 3)
Thus, S(f) can be calculated from (2) and (3) if the mean wind profile is known. Our data
and a least squares fit of Eqs. (2-3), with B and C left as free parameters, are shown in

Fig. 7.2-M1. Note that u, is now calculated from (3) and not from the logarithmic model
with the Charnock relation. The resulting parameter values are

B =264, C=0497, x*=189695 N;= 1405 ' 4)

and the fit as such is rather bad. The Harris spectrum is too peaked when compared to our
data, as noted in the main report (Andersen et al. 1991), and a constant scaling length L
does not allow any z-dependence (except in u(z)).

7.2-M2: Davenport’s model
Davenport (1961) has proposed the spectrum
f S(f) 4Cx

= x=fLu@), L=1200m, B=C=1 (5)
Ll,..2 (B + x2)4/3

A least squares fit to the data is shown in Fig. 7.2-M2. The scheme of Sec. 4 based on
the Chamnock relation was used to evaluate u, and u(z). The following values resulted from
the fit

B =0.977. C=0.629, x*=90123, N,= 1405 (6)
Defining S(f) proportional to u,’ rather than ur2 (as implied by Eq. 5) will improve the fit

when compared to M1, but the extra power of f (in xz) is definitely not in agreement with
our data, as compared to the other models, and destroys the gain.
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7.2-M3: Kaimal’s model
The rather popular Kaimal (1972) spectrum can be written as

f S 105 C x
= . x =fzu(@z), B=C=1 @)
u,’ (B + 33 x)

where the height z is used as the scaling length. Both u, and u(z) are needed to calculate
S(f). A least squares fit to the data is shown in Fig. 7.2-M3. The following values
resulted from the fit

B = 0.640, C = 0.834, Xx° = 18825, N; = 1405 (8)

Compared to the two previous models, the fit is much improved. The Kaimal spectrum is
less peaked than the other classical models, and this improves the agreement with our data.
Further, the high frequency part of the spectrum scales with z rather than a constant length
L.

7.2-M4: Deaves & Harris’ model

The model of Deaves and Harris (1978) is rather complicated, and are defined by the
following set of equations

f S(f) 0.115Cx
°u2 = 0041 B + x2)5/6 x = f L(z,u)/uiz), B=C=1 (9a)
0.48 ¢
Lzuw = ——~ (9b)
€(z) B(z)
B) { 1 Z22Z,
7) = 9¢
[1-(1-2/z)" 1" 2z, o
z, = 0.39 h [u/(f, )] (9d)
du
e(z) = u’ — [1 - z/h] 2 (%¢)
dz
h = A u,/(6f) A=1 (9f)

Here, f, is the Coriolis parameter. o, was calculated using the ESDU formula Eq.
(5.1.12), with the original coefficients. From the stated philosophy of using the best fit
logarithmic/Charnock model of Sec. 4 to describe u(z), it follows that

du U,
- = 10
dz K Z (19)
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The model is compared to our data in Fig. 7.2-M4. The auxiliary parameters A, B and C
introduced were determined by a least squares fitting, giving the result

A = 0.368, B = 0.443, C = 0.6%94, x> = 36011, N, = 1404 (1n

When the complexity of the model is taken into account, the fit is not very good. Mostly
this is due to the peaked "Harris” shape imposed by the model, whereas the z- and u-
dependence are not too bad.

7.2-M5: The ESDU model

The ESDU (1985) model is developed from the model discussed in the last section.

f S(H) 2.987 8 x C 1.294 (1 - B) x F, C f L(z,u)
2 = 2,5/6 + 245/6 X = (12a)
o, 1+ 21 x)°] 1+ 21 x)7] o (u(z)
C=1, F, =1+ 0.445exp[-0.76 x*°] (12b)
g8 = 2.357 o - 0.761 (12¢)
A = o> (0.3858 - 0.3298 «) (12d)
A =0.115[1 + 0.315 (1 - z/h)° 17" (12e)
A3/2 o 3
Lzu) =—————" (12f)
e(2) K@)™*
0.20 Q, zZ22,
K(z) = { ) Q =1 (12g)
0.20Q, [1 - (1 -z/z)" ] 2Lz
z. In(z/zy) = 0.65h Q, Q=1 (12h)

Here, €(z) and h are given by Eq. (9e-f), and o, are evaluated by Eq. (5.1.12) using the
ESDU coefficient. Eqs. (12d-e) represent an implicit relation from which o is determined,
and Eq. (12h) defines z, implicitly. C is a normalization parameter, and Q, and Q, are
two non linear parameters which are introduced by us to allow an adjustment of the
original parameters. A least squares fit of this model to the data is shown in Fig. 7.2-M5.
The corresponding parameter values are

C =0683 Q =308 Q,=001, xX*=26211, N;= 1404 (13)

The very low value of Q, (actually the minimum value specified for the fitting procedure)
means that the upper branch always in chosen in Eq. (12g). or

K(z) = 0.2 Q, = 0.616
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The fit to our set of data is not satisfactory, and is indeed inferior to the simple Kaimal
model. The main problem is the "Harris” shape function, the additional F,-function in the

second term works i the wrong direction.

7.2-M6: Standing’s model
Standing et al. (1990) have proposed a model which may be written

f S _ 0.66 C x (142)

¢ 2 [x0.15 Q2 + 9/8 Q3 X]S/S

u

o, = 0.075u(80m), x = fLQ/u(z), L=1667m, Q =Q =Q =1 (14b)

Here C is a linear multiplier, and Q,, Q, and Q, are non linear multipliers to the original
parameters. The wind profile was calculated from the logarithmic law in combination with
the Charnock relation. A comparison of this model to our data is shown in Fig. 7.2-M6.
The multipliers were determined by a least squares fit, giving the result

C=1.13, Q =0489, Q,=1.00, Q, =2.15 x* = 66303, N,= 1403 (15)

The z-dependence is not very well fitted by this model, but the frequency dependence is
reasonably described.

7.2-M7: The Naito-Kaimal model

Naito (1983) used a normalized Kaimal spectrum, and found the best fit to be

f S(f) 19 x .
= x = fz/u(z 16
ol 1+ 57 x? v (16

u

Comparing to Eq. (7.1.5), one will observe that this spectrum is not properly normalized.
If ou2 is defined in analogy with eq. (7.1.3), then the r.h.s is too small by a factor of two
if the lower limit of integration § = 0, and by more than a factor two if § > 0. Assuming
that the denominator "57" is correct, the following version was fitted to the data

£ S(f) (2/3) 57 C Q, x
— = s x = fz/ uz) (17)
o [1 + 57 Q, x]

u

where Q, and C are auxiliary parameters.

Using the ad hoc model of Sec. 5.1-M6 to calculate o, and the logarithmic wind
profile combined with the Charnock relation to calculate u(z). the following parameters are
found
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C =153 Q =161, x=45565 N;= 1405 (18)

The fit is rather bad in this case, and much inferior to what was found in Sec. 7.2-M3,
demonstrating that the use of ¢ as defined from the turbulence intensity (Sec. 5) does not
work very well.

7.2-M8: The Vickery formula and the Phase I model

Based on data from Shiotani (1975), Vickery (1983) found the following general
formula for the turbulent length scale L

L(z,u,) = 200 (z/zr)o'2 (ur/uo)o'5 u =u(z), z =80m, u = 20 m/s (19)

r

where L is defined as the value of the ratio of u/f when f S(f) has its maximum value, or
L= U(Z)/fmax (20)

Defining f . from our spectra is non trivial, and will in general require a spectral shape

max

function to be fitted to the data. Based on results from the main project, the best single
term spectral function can be expected to be on the form

A(z,u) v
f S(ﬂ = ny5/3n Y= f /f'
[1 + 1.5vy7]

f =u /Lzu) 20

nax?’ max

where A and L will be functions of u_and z. In agreement with the main project results,
these functions are assumed to be given by power law relations,

L = L, z/z)%" U /u)®, z, = 10.5m, u, =20m/s

(22)
A=C ur2 (z/zr)03 (ur/uo)Q“
A least squares fit to the data gives the following results
n = 0.468
L(z.u) = 890 m (z/z,)"*" (u/ug)”*" (23a)

A(z,u,) = 0.0738 U.-2 (z/zl_)'o’216 (Ur/u0)0'752
A numerical integration over frequency gives the total variance corresponding to this fit as

o2 = 0.238 A(z.u) = 0.0176 u? (2/2)°'® (u/u))” ™ (23b)
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The fit characteristics were
x* = 4 194, N; = 1400 (24)

The fit is shown in Fig. 7.2-M8. This fit is quite good. The powers of the (z/z,) and
(u/u,) factors in A and L are coupled, and their respective values will depend on the
frequency region being fitted. Extrapolation of our results to z = 80 m and
U(80m) = 20 m/s, gives L = 3250 m, 16 times the value found by Vickery.

7.2-M9: On some of the conclusions of Eidsvik

f #3 - dependence) is

Eidsvik (1982) has concluded that the inertial subrange law (
valid for frequencies above 102 Hz. This is not in agreement with our results, as may be
seen by consulting any of the graphs. This point was also discussed in Sec. 4.3. The limit
will depend on height and wind speed, and quantitative limits are given by Egs. (4.3.17-
19) for a high frequency parameterization by the Kaimal spectral function.

A second conclusion of Eidsvik is that the spectral density at 10 Hz and 110 m height

is adequately represented by
S(f=0.01Hz, z=110m) = 2 107 u,,,** (25)

where u,,, is the local wind speed.

From eg. Fig. 7.2-M8$ it is seen that the value of f S(f) is rather constant, and near the
maximum value in the 0.01 Hz region. The value of f S(f) at maximum is from Sec. 7.2-
M8 approximately given as

(£ SM],, = 2.5 Az.u) = 0.00282 v (2/z)"" (u/u))* ™ (26)

Using this result and the wind speed profile data from Sec. 4.1-M5 (assuming a wind speed
region around u. = 25 m/s giving « = 0.124), we get

S(f=0.01Hz, z=110m) = 0.018 u>"® = 0.009 u,,,*” Q7)
The difference in the wind speed exponents (2.75 versus 2.67) means that our result is
about 60 % of that of Eidsvik's when compared at u,,, = 30 m/s. Consulting Fig. 7.2-

M8, this is seen to be within one standard deviation of the observed values, which tend to
be somewhat higher than the model values in the 0.01 Hz region.
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7.2-M10: Lacour’s model

Lacour (1979) has proposed the model

f Ef f
SO _ - — (28)
u*2 (1 + E3/5 ﬂ5/3 (E- 3/5.+ ﬂ5/3

with the prescription that the quantity E should be estimated by equating the integral of the
spectral function S(f) to the integral of the observed spectrum. This is in general a
rejectable criterion for determining such a parameter, except in the case that S(f) is
constant in the region of interest. The total variance following from (28) is

o? = 1.5 u,? E?*, and equating this to the M8 estimate, Eq. (23b), at z = 20 m and

u, = 20 m/s gives E = 52.6. Applying a least squares fit, which normally also will ensure
that the integral condition is approximately fulfilled, gives a much smaller value for E.
This is explained by the weighting, which makes the high f region critical in the fitting
process. The characteristics of the fits are

E = 52.6, X> = 4827598, N, = 1407 (integral principle)
(29)
E = 2.62, x* = 407 808, N, = 1406 (least squares)

A comparison to the data is shown in Fig. 7.2-M10 (remember the logarithmic scale when
judging the fits). Also shown are curves corresponding to E = 1000. Note that the
formulation (28) does not include any z-dependence for S(f), and that the wind speed
dependence is included in the u,-term only. Expanding (28) in the large f limit gives

f S(f) f

2

N 5 28
u, € + (SBHE P+ -0

whereas a more conventional model, like e.g. Kaimal’s model Egs. (7-8) has the large f

expansion
f S(b) 105 C x 3 .
= > 031 Cx“ =0.21x" x = f z/u(z)
u*2 (B + 33 x)5/3

In comparison, the E or B parameters in the two models play a similar role. but the
Kaimal model has better scaling properties and the C parameter is essential in adjusting the
amplitude in the intermediate and large f region.
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7.2-M11: The "blunt” spectrum

This is a Kaimal type of spectrum, but with no z- or u-dependence of neither the

spectral (f S(F)) maximum point f_,, nor the high frequency limit.

Culy
£s@) = = v = £/, =fTon (30)
[1 + 1.5«]

Assuming u, to be defined by the Charnock relation as discussed in Sec. 4.1-M5, a least
squares fit to the data gave the following parameters

C=494, T, =528s, x =61651, N;=1405 31)
The fit to the data is shown in Fig. 7.2-M11. As expected, the lack of z- and u-

dependence in the spectral parameterization gives a bad fit compared to the original Kaimal
model.

7.2-M12: The "pointed” spectrum

Compared to Eq. (21), the spectrum discussed in the last section had a shape constant
n = 1, whereas the "pointed” spectrum has a shape constant n = 5/3, and is given by

- 0.6435 C u,” v o ) )
S( = Y = max = TTI X (3 )
[1+ 1.5y ‘ e

The numerical factors imply a spectral normalization of ¢ = C u,’. The same general
comments as given in the previous section are valid in this case too. A least squares fit to
the data gave the following parameters

C=447, T, =545s, X =64555 N;= 1405 (33)
The fit to the data is shown in Fig. 7.2-M12. Compared to the last section, a larger value
the shape constant leads to a worse fit. This is not unexpected, since the free fit in Sec.
7.2-M8 gave n = 0.468. The assumption of different shape functions also influence the
T, and o value (¢ = C u?). It should be mentioned that all these values are also
influenced by the weighting and spectral region over which the fits are performed, since,
obviously, all our fits are less than perfect.

A better estimate for T, is given by the spectrum discussed in Sec. 7.2-M8, from
which it follows that approximately

T, .. = 420 ( z/zl.)o'667 u,fo‘749 (SI-units understood) (34)

max
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demonstrating that T,,,, depends on height and wind speed. From the main project, and
other sources, it is also known that T, will depend on stability as well.

7.2-M13 The P2 spectrum

In the main part of this project, a two term model was used to discuss data for general
stability. For neutral conditions, the model may be written

fS C, z/z)° f C,f

® _ = =+ - = £, =1/T, (35)
u’ [f, + 1.51] [f," + 1.5 7"
T, = Q z/u(@) T, = Q,/ u(2) (36)

Here, a, b and n are exponents to be fitted, Q; and Q, are two other non-linear
parameters, and C, and C, are linear parameters. A least squares fit to the data yields

C, =2.5210% C,=4.7910°, a=3.32 b=160, n=04I3
Q, = 18.5, Q, =3610m, x’ = 3504, N;= 1400 (37)

This represents the best fit to the neutral data. A plot is shown in Fig. 7.2-M13.
Compared to Fig. 7.2-M8, where the next best fit is presented, the present model gives a
slightly better fit in the low frequency range. Note that the first term becomes less
important with increasing height.

7.3 General stability

The parameterization of stability and wind speed etc. will be along the same lines as
used in Sec. 4.2 discussing turbulence intensity.

7.3-M1: The Hgjstrup model

Hojstrup (1981, 1982) has proposed a model for unstable conditions which may be

written
f S() 0.5 C, n; (z/L)*? 105 C, n
= + - ¢, =C, =B, =B, =1 (la)
u,’ (B, + 2.2 n° B, +33n?
n = f z/u(z) n, = f z,/u(z) (1b)

where C,, C,, B, and B, are auxiliary parameters introduced for a least squares fitting, and
z, is the height of the convection layer. To evaluate this quantity, the Deaves and Harris
expression was used.
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z,=u,/(6f)

The Monin-Obukhov length L was calculated by Eq. (4.1.12), and u, was calculated using
the Charnock relation with parameters resulting from the fit of wind profile data for general
stability discussed in Sec. 4.2. Fitting to the data, C, comes out negative (this also
happens if the original values of the non-linear parameters are used, i.e. B;=B,=1). The
first term in the spectral expression is supposed to describe the convective part of the
spectrum. In our experience, this is the least pointed part of the spectrum. In this model
it has, however, been assigned to the most pointed of the two spectral terms, and in a free
fit, this apparently causes the result described.

Thus, according to the conventional interpretation, C, < 0 is unphysical. Since the fit
is not very good in any case, we see no point in discussing this particular model further.
However, the two term model used in the main project, which is similar to the Hgjstrup
model, is discussed in Sec. 7.3-M3 below.

7.3-M2: The Moraes and Epstein scheme

Moraes and Epstein (1987) have proposed a variation of the "pointed” spectrum to
describe the data for stable conditions

0.744 v o’
£SH = = v = £/, @)
[1 + 1.5y 77]

£ =0.0453 Q (uz) [l +2.5Q, @@L I*

max

3)

2 2
o = Cu,

Here, we introduced the auxiliary parameters C, Q, and Q, to adjust the numerical
parameters to our data (Q; = Q, = 1 in the original formulation, the formula given in
Andersen (1991) contains a normalization error).

A least squares fit to the data with u, and L determined as explained in Sec. 7.3-M1.
gave the result

C = 3.58. Q, = 1.008. Q, = 0.456, x* = 63 811, N, = 3340 (4)

Three classes in X’ in the range 0 to 0.6 10 were used in the fitting. In the plots shown
in Figs. 7.3-M2a-c. the mean values for the two higher classes are shown. Of a total of
350 periods with X* > 0, the lowest class (labelled "Stable” in the plots) contains 293
periods.

The fit is not very good. The x? value obtained in the next section for all periods
(general stability). with twice as many degrees of freedom, is one third of the value found
here.
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7.3-M3: The P2 spectrum for general stability

In the main part of this project, a two term model was used to discuss data for general
stability. In the present context, the model may be written

fs C, (z/z)"f C, f
(f) — 1 ( r) - + 2 = ka — 1 /Tk (5)
u’ [, + L5 [f" + 1517
T, = Q z/u@ T, = Q, exp(-Q, o)/ u(2)
(6)
n = n, + n; exp(Q, r) o =X\ (u/10)°

Here, a. b and c are exponents to be fitted; ny, n, and Q, determine the shape of the
second spectral function, and Q,, Q,. and Q; determine the position of the maxima of the
spectral functions. C, and C, are linear parameters. A least squares fit to the data yields

0
Il

2.67 105, C, =5.4910%, a=3.28 b=168 c=268

n, = 0.1893, n, = 0.0325,
()

Q, =243, Q = 17380, Q, = 40240, Q, = 26960

x* = 16 430, N; = 6 588

The fitted curves are compared to the data in Figs. 7.3-M3a-c. The stability classes used
in the fitting and the plots are given in Table 5.2.2. Although there are systematic
deviations between the curves and the data in certain regions, the overall fit is quite good.

7.4 Extrapolation to design wind speed and conclusions

In Fig. 7.4.1-3 observed and calculated low frequency spectra for neutral conditions
are shown versus reference wind speed for 46, 20 and 10 m height, respectively. The
experimental points represent mean values for three frequency intervals, the mean
frequency being 0.00194 Hz. The bars indicate the standard deviation of the sample. The
curves represent the Phase 2, Phase 1. Kaimal, Standing, ESDU and Deaves-Harris models
evaluated at the mean frequency. Only the Phase 1 and Phase 2 models give a credible
representation of the data in this frequency interval.

In Figs. 7.4.4-6 a corresponding set of plots are shown for the 0.01 Hz region. Again
the experimental points represent mean values for three frequency interval, the mean
frequency being 0.0108. Again, only the Phase 1 and Phase 2 models seem to give a
reliable representation of the data at all heights. The Phase 1 model seem to have a
slightly more trustworthy wind speed dependence.
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The same set for the 0.1 Hz region is shown in Figs. 7.4.7-9. The experimental data
are mean values for two frequency intervals, the mean frequency being 0.102 Hz. Only
the Standing model is clearly "off” in this case. But again, both the Phase 1 and Phase 2
models give a very good representation of the data.

All observations in this project suggest spectra that are less peaked than those
discussed in the literature. The spectra discussed in the main report (Andersen et al.
1991), presented in Secs. 7.2-M8, 7.2-M13 and 7.3-M3 above, gave by far the best fit to
the data.

Because f S(f) does not go to zero at the lowest frequency considered, f;, = (600 s)", it
is not practical to use the directly observed variance calculated from the turbulence
intensity, as discussed in Sec. 4.2, to normalize the spectra. Since the absolute value of
the spectral turbulence is given by the experimental data, this is not a great problem. The
spectra do indeed demonstrate that if one wants to discuss the total variance, one should
always be careful to state the corresponding spectral interval.
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8. SUBTASK 4.5: COHERENCE SPECTRA

Coherence is a measure of the correlation (independent of phase) between the
individual frequency components of two time series over a given time period. The same
methods as discussed in the Phase 2 report, Sec. 5.4, will be used to parameterize the
observed coherence spectra.

8.1 Evaluation of the parameters of the coherence spectra

Coherence has to be evaluated from ensemble averages of cospectra, quadrature
spectra and the one point spectra of the two sets of time series. A faithful estimate
requires an average over many frequency values or many realizations. In the low
frequency region, only one frequency value occur within each variable cell, with the
intervals chosen in this investigation. Thus, unless the ensemble is divided into
subensembles, only one estimate of the coherence for a given variable cell will in general
be available, and a direct experimental evaluation of the variance of the coherence estimate
is not possible. This is in contrast to the one point spectra, where each time series gives
an estimate of the spectral density. Since the variable cells used in this investigation are
effectively rather small, a good indication of the effective variance of the estimates is
obtained by studying the scatter between estimates for neighbouring variable cells.

The parameters of a particular model are estimated by a least squares minimalization
of the difference between experimental and model values,

LSQ = Minimum{ £ W; [ Coh, ¢, - Coh, o I* } (1)

where W, is the number of time series available for variable cell No. i, and the sum runs
over the set of variable cells available. Note that this weight function is independent of
frequency. The same set of frequency intervals is used as in the discussion of one point
spectra.

A root mean square value of the deviation between experimental and model values of
the coherence will be defined as

b, =[LSQ/N %, N=:1W, )

oY
Because coherence numerically is limited to the interval [0,1], and is a measure of the
correlation (independent of phase) between the frequency components in the time series
involved, 4. may be used as an overall measure of the goodness of fit when comparing
different models. However, the individual plots comparing experimental and model values
should also be inspected to check that the fit is reasonable within each region of the
variable range.

rms
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8.2 Fitting models of coherence for vertical separation

The fits are based on the Sletringen data for neutral stability, as defined by Eq.
(7.2.1). Also the other conditions discussed in Sec. 7.2 will apply. Thus the friction
velocity u, and the wind speed at a general height will be evaluated using the Charnock
relation and the logarithmic model with the best fit parameters as discussed in Sec. 4.

The four heights at Sletringen give six possible combinations for the pairs of heights,
z,,Z,, which are all used in the fitting described below.

8.2-M1: Davenport’s model

Davenport (1961) has proposed the model
Coh = exp[ - a, 8z f/u(zy)], oz = | z, -2z, | (1
In our applications, the geometrical mean height,

z, = [z, 2,)" )
has been used for z. Different values of the damping parameter a, are reported in the
literature. Davenport (1977a) found

a = 10 (3)

A

Standing (1990) has used the same model, with the parameter value
a, = 20 )
A least squares fit to our data results in

a, = 29.6, 8., = 0.080 5
The fit is not particularly good, and is shown in Figs. 8.2-M1la-b. Mean values are shown
for both experimental and model values for four wind speed classes.

The models discussed below indicate that the parameter a, is a function both of the
separation Az and the geometrical mean height z,. It is also known that a, depends on
stability. In the Phase 2 report, a, was found to depend both on frequency and stability.
The value of a, obtained for a particular set of data will thus depend on the range of values
of the external variables for the set.
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8.2-M2: Shiotani’s model

Shiotani (1975) proposed a generalization of the Davenport model, with a, in Eq. (1)

on the form
a, =a, +a,z/z ©6)
with parameter values

a,, = 2.7, a, =17 (7
Again, "z” in the original formulation was replaced by the geometric mean of the two
heights in question. Fitting this model to the data improves the fit considerably when
compared to the simple Davenport model, the result being

a,, = 13.7, a, = 20.1 8, = 0.033 (8)

rms

The corresponding plots are shown in Figs. 8.2-M2a-b. The Phase 2 model discussed in
Sec. 8.2-M4 below gives an even better fit to the data, and with reference to the discussion
at the end of Sec. 8.2-M1, it is not possible to say if Shiotani’s results, Eq. (7), are in
direct disagreement with our data without looking at the two sets of data in more detail.

8.3-M3: The ESDU model

The ESDU (1985) model for coherence is defined by
coh = exp[ - 1.15Q, n,"* %], Q,=Q, =10 (9a)

where n, is given in terms of the quantities introduced in Egs. (7.2.12e-h), and the
additional relations

L, = L(zu) { 0.5-0.34 exp[ - 35 (z, /)" ]} (9b)
r, = 0z /'L, (9¢)
b= 03517 (Od)
« =0.747 1, (%e)
B=2anz/u(zg) (99)
c=1.6r""1a" + 67" (9g)
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n,o=[o + 81" (9h)

Q, and Q, are multipliers to the original parameters, and are allowed to vary during the
fitting. In addition, the multipliers Q, and Q, were introduced in Eq. (7.2.12g-h).
Numerically, multiplier values of one will give the same result as the original formulation.
A least squares fit to the data yields

Q, =097, Q =001, Q =3.6l, Q =0.88, 8, =0034 (10)

These results are compatible with those obtained in fitting the single spectra to the ESDU
model, Eq. (7.2.13). A smaller value for Q, in this case is compensated for by the rather
large value of Q,, the resulting model values are very roughly dependent on the product Q,
Q-

Plots of the resulting fit are shown in Figs. 8.2-M3a-b. A striking feature of this
model is that the coherence does not go to zero at f = 0, as the Davenport model, Eq. (1)
indicate. Experimentally, such an effect will be observed if the wind speed profile is
different for different time series, and this will in practice always be the case, for a variety
of reasons, e.g small differences in the thermal stability, different history with differences
in convective layer thickness, etc.

To our data, the very complicated ESDU-model is seen to give a slightly inferior fit
than the Shiotani model. The ESDU model seems to exaggerate the possible deviations at
small frequencies. However, the deviations at the lowest frequency values are excluded in

calculating the & because of the uncertainties discussed earlier.

rms?

8.3-M4: Phase 2 models

In the Phase 2 work, a modified Davenport model, Eq. (1), was used. The damping
coefficient, a,, was parameterized as a function of z,, 8z, f and lapse rate. For neutral
stability, an equivalent formulation is

a, = [a, + a, exp(-bf]az'/z,° 2z, =z 2) %710 (11)
A least squares fit to the data gives

a, = 18.3, a, =69, b=103.7, p=044, q=029, o, =0.0246 (12)
The fit is shown in Figs. 8.2-M4a-b, and is quite good over the variable range covered.
Note that u(z,) is used in the present model in agreement with Eq. (1), whereas u  was
used in the Phase 2 work. This explains the lower value of p found here (p = 0.51 in the
Phase 2 work). The agreement is otherwise reasonable.
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Two simplifications of the above model have also been investigated. The most drastic
is to skip the exponential term in (11), and write

a, = a, 82 /2,0, 7, = [z,2]" /10 (13)

The corresponding least square parameters are

a,, = 16.7, = 0.44, q =0.35, 4, = 0.0280 (14)
The fits are shown in Figs. 8.2-Mdc-d. To the eye, the fits are nearly as good as for the
full model.

As mentioned in discussing the ESDU model, frequency independent sources could
decrease the correlation. The main effect is assumed to be variations in the wind speed
profile, with a net result proportional to In(z,/z;). A possible parameterization is

Coh = expl - { [ &, 8z f/ u@@)l + ¢ [In(z,/z)I" } * ] (15)

where a, is defined as in Eq. (13). Concerning the algebraic form of Eq. (15), the root of
the sum of squares is assumed to give the combined effect. A least squares fit gives

a, = 16.8, p =042, q=033, c=0.116, 8, = 0.0252 (16)
The corresponding plots are shown in Figs. 8.2-M4e-f. The last model deviate strongly for
the three lowest non counting f-values, and should probably not be recommended.

8.3 Models of coherence for lateral separation

Experimental data of coherence for lateral separation must be taken from Skipheia,
where measurements from three masts are available. Whereas the air-sea temperature
difference was used to define neutral conditions in the previous sections, this will not be a
natural choice for the Skipheia station. Due to the distance from the sea, lapse rate must
be used to classify the data.

During the Phase 2 work, coherence spectra from the Skipheia station were
investigated in great detail. In particular, simple Davenport models were examined, and
generalized to obtain a best fit model. In the case of neutral stability and lateral
separation. the Phase 2 model may be written

Coh = exp[-a, 8y f/u ]. a =[ag + a, exp(-b, 0] (z/z,)"
(17)
a, = 18.4, a, = 65.5, b, = 78.9, p = 0.42

¥
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where the values for the restricted maritime sector were used (note that the neutral value of
the sigmoid function used to parameterize the stability dependence is 0.5). This model is
compared to a Davenport model,

Coh = expl - a, 8y f/u@ ], a = 12 (18)

where the coefficient value is due to Bowen et al. (1983), and an ESDU (1985) model in
Fig. 8.3.1 for reference wind speed values of 20, 30 and 40 m/s, a height of 46 m and a
separation ay = 80 m. Whereas the Bowen and ESDU models agree quite well, there is a
disagreement with the Phase 2 model. Panofsky and Dutton (1984) present results due to
Kristensen et al. (1981) showing that with a model as defined by Eq. (18), a, = 14 at 8y/z
= 0 increasing to a, = 50 for Ay/z > 3.5. A mean value of the height z for the Skipheia
data is 40 m. At u, = 20 m/s and Coh = 0.5, a, = 48 is representative with a range in
oy from 79 to 205 m. Thus in the general case, a simple Davenport model (Eq. 18) is
probably not able to give a precise description of lateral coherence. To see if there is a
real disagreement between a set of results based on an incomplete model, a more complete
investigation of the data is necessary.
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Fig. 4.1-M1 The "near neutral” profile data compared to the power law model Eq. (4.1.2). Curves

are shown for a least squares fit, and for exponent values as indicated.
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and neutral stability (see text).
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Fig. 4.3.2 As Fig. 4.3.1. but with mean results for the heights 42 and 44 m for four classes of

atmospheric stability. The curves represent a fit an ad hoc Kaimal model.
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Fig. 5.2-M1.2 A least squares fit of the Panofsky model, Eq. (5.2.1-2). to the turbulence intensity data

for unstable atmospheric conditions.
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for reference gust factor.

- 108 -



(:}I ‘1?() IIl
(;:[ EB() II] (;]7 I.Ei() ]:[l
llllllll'lllllllljllllllllllllllIIIIII'II]IIIII!I]J‘I'

Gr 20 m

Gr 10 m

Fig. 6.1.4

A W ll.l Ll Ll 'l Ll il Lol Ll il beded .l 1
| 13 1 | | | o ' |
I | | [N |
i i |

..........

et
.........
R

L ndanieee
Lo st tanetenerett

.....
......

eeseseeeettt ............-..-..-.........-..-..
.

PRI
..............

.. .er
...............

.
sere

lllllllllll

.....
-----
.....
.....................
.......

e
..... . M cesvenerst® .
............................. cesseseettt
................
e gandenebeneieiee ERRRIIIILL R
PRI L _____.._.--—--—-—'—'""""
__.__.___--—-—————-—
-_--_---------------------_--_----_--------_.

.........
.................

T I e ettt PP R R e s vt .o .
. . . X . cesene . . -..-....-...........................,........
Levessaaenenett weseaneceenett
..o.-......-............... cose .
ctasesanrne
e et -—
- -———--

1 nln'uln

Illllll'lll l
180422218
111 lllllllll'llllllllll
. ALl llllll'llll'lll

TVvrTr Y
| IR I
| DA DA T
I LN NI (LB L B B
LA BRL BN A
| AL B
Trrr

.......

.......
-------------

..
....... e
................. '!-uooo--ot-u.n'n"‘
---------- : "'z;:;;n;;""n””"""""““”""""“"""..“".w
...................................
T
p—__.—_._.__._._....____...__.__.—.__.
------_----_-_---_----_--------_----,----_----__

II[ll"
| IR I
[vvyvlvy?
L]
| AR BN ML AN LA S
L3N BRBRLALEN AR
L LR B B
M

1 . . . . .
. . 1 Es.() 1
8
. B :3(3 () f3f3 () ()
0() ]2() ]4() 8‘) 2“() 22() 241} 26') 28() 3“‘) ”2() 4() 4 O

Ref. wind speed (m/s)

Reference gust f: .
Carves areg ' actor according to the model (6.1.9-10) versus refere
) . n i
given for the heights 10, 20. 40. 80 and 150 m, and for g C? wind speed.
. ust intervals 3. 5,

15.
60 and 600 s. See text for comments on validity

- 109 -



' I 'l L 1 I 1 1 1 ' 1 L i ' L L 'l ' 1 1 1 ‘ i 1 1 ' s L 1 '
3 Legend
150 3 Obs. 1.2 s
L P03 Fit 125

5 . Obs. 10 s
® 1.40 o Fit 10 s
7y ] Obs. 1 min
g 130—:1 Fit 1 min
~ ] Obs. 10 min
5 120 3 ~Fit 10 min

1.10 7

1.00 3
'S
[
-
=
(Y]
=z
Q
—
Nel
q
-
0

T T T T T j—l
4.0 16.0 18.0 20.0 22.0 24.0 26.0
Wind speed (m/s)
Fig. 6.2.1 A least squares fit of the model (6.1.9) 10 reference gust factor values for general
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Fig. 7.2-M6 As Fig. 7.2-M1, but with a fit of the Standing model.
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As Fig. 7.2-M1, but with a fit of the Phase 1 model.
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Fig. 7.2-M10 As Fig. 7.2-M1, but with a fit of the Lacour model and curves for parameter values E
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As Fig. 7.2-M1, but with a fit of the "pointed” spectrum.
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As Fig. 7.2-M1, but with a fit of the Phase 2 neutral spectrum.
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Fig. 7.3-M2a As Fig. 7.2-M1, but for the mean of the heights 42 and 46 m and two classes of stable

atmospheric conditions. The curves represent a fit of the Moraes & Epstein model.
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Fig. 7.3-M2b As Fig. 7.3-M2a, but for 20 m height.
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Fig. 7.3-M2c As Fig. 7.3-M2a. but for 10 m height.
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Fig. 7.3-M3a

As Fig. 7.3-M2a. but for 4 classes of atmospheric stability and a fit of the Phase 2

model.
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Fig. 7.3-M3b As Fig. 7.3-M3a, but for 20 m height.
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Fig. 7.3-M3c As Fig. 7.3-M3a, but for 10 m height.
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Fig. 7.4.1 Observed and model spectra versus wind speed for a height of 46 m. The observation

represent mean values for 3 frequency intervals. mean frequency f = 0.00194 Hz.
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Fig. 7.4.3 As Fig. 7.4.1, but for 10 m height.
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Fig. 7.4.6 As Fig. 7.4.4, but for 10 m height.
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Fig. 7.4.7 As Fig. 7.4.1, but mean values for 2 frequency intervals with a mean frequency of
0.103 Hz.
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Fig. 7.4.8 As Fig. 7.4.7. but for 20 m height.
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Fig. 8§.2-Mla Coherence spectra for the height combinations 20/10, 42/10 and 42/20 m, four wind
speed classes and neutral stability versus trequency (log,[fS(D] vs. log,of) with a fit of

the Davenport model (see text).
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Fig. 8.2-MIb As Fig. 8.2-Mla, but for the height combinations 46/10, 46/20 and 46/42 m.
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As Fig. 8.2-Mla, but with a fit of the Shiotani model.
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Fig. 8.2-M2b As Fig. 8.2-Mla, but for the height combinations 46/10, 46/20 and 46/42 m, and with

a fit of the Shiotani model.

- 145 -



Obs Ur=12.0m/s

Fit Ur=12.0m/s

Obs Ur=15.6m/s
Fit Ur=15.6m/s
Obs Ur=19.4m/s
Fit Ur=19.4m/s
Obs Ur=23.6m/s

Fit Ur=23.6m/s

Obs Ur=12.0m/s
Fit Ur=12.0m/s
Obs Ur=15.6m/s
Fit Ur=15.6m/s
Obs Ur=19.4m/s
Fit Ur=19.4m/s
Obs Ur=23.6m/s

Fit Ur=23.6m/s

Obs Ur=12.0m/s
Fit Ur=12.0m/s
Obs Ur=15.6m/s
Fit Ur=15.6m/s
Obs Ur=19.4m/s
Fit Ur=19.4m/s
Obs Ur=23.6m/s
Fit Ur=23.6m/s

p 1 1 ' 1 1 1 1 l I Il 1 1 l 1 1 91 1 l 1 L L 2 || 1 1 I 1 l I 1 1 Il J
3 Z1=20m, Z22=10m
0.90 = .
0.80 —E Lw
o 0.70 _E 'j
2 0.60 3 3
() 3 A
& 050 3 W
Q) - ..’. i
S 040 3 \&@ i
© 030 3 S oo | i
3 VN5, ;
0.20 : , | \\v S |
3 kD |
0.10 3 ‘ ' :Y . ? |
o.oo —i L L] L) ; L] L] v T : T L L) Ll 5 L L) L] L) L] L] 1] ' L) 1 1§ v L4 E 1] 12 ¥ 4 “
L) g' ' ! ! 1=12m, Z2=10m
0.90 .E — ‘$ $ _: -
0804 oo ¥ R v
o 0.70 -E e e *
8 060 3 — —
) = R N T 2 TS
& 0503
L3S
gowy —
©osd - .
0.20 = -
0.10 3 | |
0.00 = .
R ) 1=42kn, Z2=20m
090 3
0804 — - v
o 070 3
S 0.60 3
()] I N e
& 050 3 :
2 3
g 040 3
© 0.30 3
0.20 3
0.10 =
0.00 = L] L L] L) l L] L] L] L) I ¥ 1 L L] I 1] ¥ L] L] I 1] L) T 1 ).. L} ] T 1) L] 1 L] l

-3.50

Fig. 8.2-M3a

-3.00 -2.50 —-2.00 -1.50 -1.00 —0.50

Log(Frequency/Hz)

As Fig. 8.2-Mla, but with a fit of the ESDU model.
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Fig. 8.2-M3b As Fig. 8.2-Mla, but for the height combinations 46/10, 46/20 and 46/42 m, and with
a fit of the ESDU model.
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Fig. 8.2-Mda As Fig. 8.2-M1a, but with a fit of the Phase 2 model.
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Fig. 8.2-M4b As Fig. 8.2-Mla, but for the height combinations 46/10, 46/20 and 46/42 m, and with

a fit of the Phase 2 model.
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Fig. 8.2-M4c As Fig. 8.2-Mla, but with a fit of a simplified Phase 2 model, Eq. (8.2.13).
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Fig. 8.2-M4d As Fig. 8.2-Mla, but for the height combinations 46/10, 46/20 and 46/42 m, and with
a fit of a simplified Phase 2 model, Eq. (8.2.13).
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0.90
0.80
0.70
0.60
0.50

0.40

Coherence

0.30
0.20
0.10
0.00
0.90
0.80
0.70
0.60
0.50
0.40

Coherence

0.30
0.20
0.10
0.00
0.90
0.80
0.70
0.60
0.50
0.40

Coherence

0.30
0.20
0.10
0.00

Il 1 1 Il | 1 1 1 1 | Il e 1 I l 1 Il 1 1 I 1 'l 1 1 l 1 1 i 1 1 1 1 1 J 1 ¥l 1 1 I
: Z1=46m, Z2=10m

% $ : : : . = Obs Ur=12.0m/s
— Fit Ur=12.0m/s
) \ < : : ' v Obs Ur=15.6m/s
-== Fit Ur=156.6m/s
Obs Ur=19.4m/s
Fit Ur=19.4m/s

Obs Ur=23.6m/s
feeeees Fit Ur=23.6m/s

Obs Ur=15.6m/s
Fit Ur=156.6m/s
Obs Ur=19.4m/s
Fit Ur=19.4m/s
T Obs Ur=23.6m/s

[ eeeeee Fit Ur=23.6m/s

e e
|

1=46m, Z2=42m
Obs Ur=12.0m/s
Fit Ur=12.0m/s
Obs Ur=15.6m/s
Fit Ur=15.6m/s
Obs Ur=19.4m/s
Fit Ur=19.4m/s
Obs Ur=23.6m/s
Fit Ur=23.6m/s

lllllllllllllllIlllljllllllljljlllllllllllll’_l_lIllllll'lIlllllllllllllIIII'IIIIIIIIlllllllllll'llll'llll LAl llllllll|Illl|llllllllllllllllllllll

L] L] L] L] l L] LI ] L} ' ] L] L] ¥ I T L] L] T l T T T T l L] L L] L) I LI L] L] l L] ¥ L] L] l

-3.50 -3.00 -2.50 —2.00 -1.50 -1.00 -0.50 0.00 0.50

Log(Frequency/Hz)

Fig. 8.2-M4f As Fig. 8.2-Mla. but for the height combinations 46/10, 46/20 and 46/42 m, and with

a fit of a modified Phase 2 model, Eq. (8.2.15).
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Fig. 8.3.1 Coherence calculated from Phase 2, Bowen and ESDU models versus frequency for a

lateral separation of 50 m, a height of 46 m and for reference wind speeds of 20, 30
and 40 m/s.
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