DPL - COMMERCIAL JOB CONTROL LANGUAGE

B. A. Harper
Computerquest, Brisbane.

T.

Digital Products Pty. Ltd.,

H.

Croll
Brisbane.

ABSTRACT

DPL is a general purpose interpreted

reduce the
user interfaces
Originally

to
devised

language designed to

system support needed in maintaining high level
comp.lex

especially
operates equalliy weli under RC-11L and VMS.

collections: of
for TSX-Plus,

software.
DPL also
The language has

been designed to fill the gap between basic indirect command
files and the more powerful but essentialiy rigid structures
of IND.for commercial applications.

INI RODUCEL ION

_DPL (Digital Products Lanquage) is a simple command
ianguage having a small number of directives but with
a powerful underlying design structure which suits
itself to the special needs of commercial applica
tions. Novice users can quickly gain confidence in
setting up otherwise complex command procedures.

The language igs "IwWD-like® in some of its operations
but concentrates on ease-of-use, flexability of
inputsoutput, terminal independent screen control and
powerful user-interrupt handling procedures. DPL,
being a general purpose interpreted language, is not
subject to the constraints of structure imposed by
more conventional menu control systems such as SPECS
(Ref 1), as developed previously by the senior auther.

The DPL language is<undergoing continued development
and many further features are planned. Source
language is the powerful TIORth generation language
TFRAN.

DPL DESIGN FEATURES
General Operaticn
DPL provides a CSI interface through which file and

control information may be passed, e.g.

.RUN DPL {outfilespec/switch=}infilespeci{/switch}
or

.RUN 'DPL : _ :
*{outfilespec/switch=|‘nfilespec{/switch}

It is assumed DPL.SAV resides on logical device DPL:.
Defauit operation is selected by specifying /D as the
command input. This will select the default input
file DPL:MASTER.MNU for processing.
Under TSX-Plus a user-defined command would be typi-
cally, e.g.

DPL :== RUN/S DPL:DPL /D

where /S signifies use of single character
mode. Use of

activation ,
/H at the CSI prompt provides help on

further DPL processing options which are discussed in
iater sections.

An initial first pass of the input file provides for
stripping of comments, decoding of command iines;
checking of directives, label and data table unigue

ness and sets up argument addresses, storing each user

command in a compressed format to preserve memory. Ko
syntax checking is performed at this stage. "If the
input filetype is ".MNC" it is assumed to be a
pte compiled source file in binary format and DPL

bypasses the initial phase.

A number of internally generated (permanent) symbol

values are then initialised before execution of the
command file. Symbol and data table space is dynami-
cally allocated and managed by squeezing if necessary

in response to the storage needs of the command file.

Execution flow control may cause transfer to any

number of other files containing further DPL instruc
tions. User symbols are normally purged durina such
transfers of control but may optionally be saved if

required to allow sharing of values. The chain area

is used for sending commands directly to the monitor
and, while under monitor control, the present status
of the DPL file is saved on a scratch file to allow

later recovery to the next DPL command in sequence. A
maximum of 127 command lines is presently allowed in
any single command file.

Directives

Table 1 summarises the DPL directives currently avail
able. Simplicity in source file decoding is aided by
allowing only one directive per command line. In
practice this is not a handicap to efficient proaram-
ming because many directives contain implicit
"if-then-else" logic.

TABLE 1
DPL DIRECT IVE SUMMARY

Name Usage

SACCEPT symbol data
$BRANCH_ON_INPUT symbol data
SCLEAR screen

$DCL monitor command
SDELETE symbol

SDISPLAY text

$SDEF_TABLE pure data

$END TABLE pure data

SEXIT exit

$GOSUB subroutine

$GOr O label

SIF relational tests
$INPUT symbol

SLOOKUP symbol in table
$RETURN from gosub
$SAVE symbols on exit
$SET symbol value
STESTFILE if exist

STEST LABEL if exist

SWAIT for seconds

Symbols

Symbols are either permanent or user-defined. All
symbols contain variable length strings up to a maxi-
mum of 80 characters each. Symbols may be used to
build string expressions via concatenation (+) with
other symbols and literal text enclosed in double quo-
tation marks " ".

Symbol Substitution

This feature is always enabled and provides a
level of substitution only (by intent). No special
parenthesis is needed to invoke substitution - it
occurs as a normal consequence of the particular com-
mand syntax.

single

Labels

Labels may be specified for any or all command

lines.
Svmbols may contain label specifications.

Image Text

Lines devoid of any type of label or DPL directive are
shown directly on the screen by default. Typically
this feature is used for whole screen displays, help
information etc.

Generalised GOI'O

DPL allows branching to labels anywhere within a file
and, if a label cannot be satisfied internally, it is
automatically assumed to be a file specification and
control is transfered accordingly. This allows easy

seamentation of large ‘procedures into separate
sub-files with the one level of GOro logic.

Terminal Ihdependence

A powerful terminal independent interface provides

support for VI52, VI'100, ADM and HAZELTINE emulation
automatically under TSX-Plus and VMS. With Rr-11 a
CSI switch can be used to specify the terminal type.
The terminal interface allows X,Y cursor positioning,

arrow key controls. clear screen and keypad activa-
tion. as well as specifying character and line
deletion keys. Special activation sequences defining
logical commands such as <HELP>, <ABORI'>, <ENTER> etc
are also available. All key definitions are soft and
easily changed on order to provide compatibility with
existing site standards such as KED or HARTLEY HAPAS.
Table 2 shows a typical soft interface definition for
a VI 100 terminal. The specified <system-abort>
character acts in a special '"breakthrough" mode
regardless of any preceding key sequences, to alliow a
hard abort function.

Single Line Editor

An internal single line editor operates in conjunction

with the terminal independent interface anc allows
deletion and overtype editing within a protected
field, the Lenath of which is set by the directive

calling it.

=Else Logic
Logical branches are based on an implied "else"
with "then" command continuation on the immediately
following line. This allows more concise expression
of logical flow in a block-like manner.

logic

Compiled Source Files

DPL input files may be either ASCII socurce or "com-~
niled" binary. Compiling, a run-time option, reduces
initial decoding overheads. DPL also has the ability
to restore a binary file to its ASCII source if neces-
sary and password decode protection can be included to
protect against unwelcome hackers.

Subroutines

In-file subroutines are permitted up to ten levels of
nesting. "Subroutine" files are possible via the use
of DPL maintained permanent symbols which keep track
of the last used filename.

Lookup Tables
Pure data sections may be defined in terms of lockup

tables to enable easy checking of user inputs against
allowahle responses, options or filenames.

TABLE 2
EXAMPLE TERMINAL INTERFACE FUNCTIONS

Function VI100 default
<system-abort> : e
<left-arrow> $[D
<right—-arrow> S
<delete-char-left> MENTT
<delete-at-cursor> <keypad> ,
<delete-line> PF4
<backspace> "10
<return-string> RETURN
<up-arro--> $Ia
<down-arrow> “S[B
<help> PF2
<soft-abort> PF1
<alternate-enter> ENTER
<move Cursor> “S[y;xH
<set- keypad> $=
<unset-keypad> $>
<clear-to-E0S> $[dn

Verification of .Labels and Filenames

Labels within the current file and
checked for existence prior
requests.

filenames may be
to acceptance of usecr

Automatic BRANCH ON INPUT

A single command can be used to prompt for a single
character user input and automatically branch to the
corresponding single character label in the current

file. "If no 1label is available the user input is
rejected. This feature is ideal for menu style selec-
tions.

Access Protection and Security

Through the use of permanent symbols, DPL programs
have access to oproject-programmer numbers and user-
names under TSX-Plus and VMS which can be used to
limit access to the system. Control-C trapping also
can be used to prevent return to the monitor.
Passwords can be protected by specifying no-echo of
user input.

Interrupt Service Labels

‘During input mode the terminal interface will react
immediately to certain pre-specified key sequences and
attempt to transfer control to specified labels in the
current file. This powerful feature enables on-line
HELP, error trapping and numerous other services.

DCL. Commands

Complex series of DCL commands may be constructed from
svmbol data and text strings and passed back to the
monitor for execution. An automatic return to DPL is
included in the DCL sequence and execution continues

at the command line following the last DCL command
specified.

General File Structure

DPL makes no assumptions about the relationships

between the various files which may make up a particu-
lar DPL system. However, as an aid to file management
a number of permanent symbols are maintained bv DPL.
These include the filename of the "master"” or original

file used to invoke the system, the current filename,
the last-used filename and the next-to-use filename
after a DCL command. Also, a symbol is available to

store the "tree" or loaical connecting file 1linking
the current file into some pre-determined structure.

A TYPICAL DPL APPLICATION

Figure 1 shows a ‘possible KED "word processing" system
WP.MNU written in DPL which illustrates the use of
many of the language directives. Figure 2 is an asso-
ciated DPL file HELP.MNU which is called from WP.MNU
to provide on-line help, but which could alsoc be
called as a ‘"subroutine" file from other DPL files
within an integrated system.

The major features of WP.MNU are as follows:

- the interrupt label <SOFABO> is first set equal to
label "TOP" to aliow a soft-abort during data entry.

- the screen is cleared and date,
displayed.

time and username

FIGURE 1
Example Word Processing System
! WP.MNU - DECUS Australia Symposium 1985

$SET <sofabo> "top"
:TOP:$CLEAR

SDISPLAY 1 3 <date>" "<time>
SDISPLAY 60 3 <user>
WORD PROCESSING

1 Edit Existing File
2 Create New File

3 File .Directory

4 Print a File

E Exit

$DISPLAY 8 23 "Press PFl to ABORE, PF2 for HELDP"
SDISPLAY 13 18 "Option 7 : "
$BRANCH 24 18 opt

! Bdit existinag file
:1:$SET switch " "

$GOSUB "infile"

STESTFILE file nofile
:1A:$DCL "EDIT "file+switch
$GOr 0 "top"

! Create new file
:2:$SET switch "/CREATE"
$GOSUB "infile"

SGOro "la"

! Directory of files
:3:$CLEAR

$DCL "DIR/ORDER:NAME"
$DCL "DIR/FREE"

$GOro "top"

! Print a file

:4:5GOSUB "infile"

STESTFILE fiie nofile

SDISPLAY 13 20 "Which printer 7 : "

:4A $$ACCEPT 31 20 2 "LS" lpt

SLOUKUP lpt plist nolpt
SDISPLAY 13 21 file" queued to printer "lpt
$DCL "PRINT /NAME:"1lpt": "file
$GOTO "top"

! Subroutine for
:INFILE:$SDISPLAY
SACCEPT 24 19 10
SRET URN

filename prompt
13 19 "Filename 2 :"
"defaul.txt" file

! Error handling
:NOFILE:$DISPLAY
SWAIT "3"

SCLEAR 1 20
$GUr0 opt

24 20 "rile "file" does not exist..

:NOLPT : $DISPLAY 13 21 1pt" is not a valid printer..."

sm Irl\ " 3 n
$CLEAR 1 21
$GOro "4a"

"

! Valid printer table
SDEFTABLE plist

LS

LP

LQ

$ENDTABLE

! HELP interrupt handling
*HELP:$DISPLAY 13 21 "Press <space> to return to menu"

SDISPLAY 13 22 "or enter menu option for help :"
$INPUT 44 22 hlp

SIF hlp ne " " lltop"
$TESTLABEL hlp "nohlp"
SSAVE

$GOro "HELP.MNU"
:NOHLP:$DISPLAY 13 23 hlp" is not a valid option. "
SWAIT “3"

! Error traps
:ERROR:
:C:$GOr'0 "top"

1 Exit
B $EXIT

FIGURE 2
Example "Subroutine" File

! HELP.MNU - DECUS Australia Symposium 1985

:TOP:SCLEAR
SDISPLAY 1 2 "HELP for "<1lfile>" Option "hlp
$GOT0 hlp

! WP.FINU HELP
shilia

HELP for editina an existing file..
(could use system help etc.)

$GOrQo <HELP>
B8
HELP for creatinag a new file. ..

$GOTO <HELP>
HEH :
HELP for directory...

$GOTO <HELP>
4
HELP for printina...

$GOT0O <HELP>
B3
HELP for the EXIT function...

$GOr0 <HELP>

! HELP for some other file. e.g.
A
:B:

| Wait for user input
tHELP:$DISPLAY 1 23 "Press anv kev to return to menu"
$INPUT 33 23 any

Error traps and return
KROR:

B
:$GOro <1file>

1

E
U
C

= the main body of the menu is specified in image text
mode to reduce display overheads.

~ option selection is via $BRANCH sinale character
input.

- options 1 and 2 share the same $DCL command with
different switches.

~ subroutine INFILE is used for promptina by options
1,2 and 4.

~ options 1 and 4 require confirmation that the
requested file actually exists.

- option 4 requires confirmation of allowable printer
via a valid printer lookup table.

- pressina PF2 at any stade of input will branch to
the label HELP (the default contents of the
permanent symbol <HELP>). An option is then
requested on which to aive help. the option is
verified via $TESTLABEL and control is passed to
the file HELP.MNU.

—- trap labels are specified for :ERROR: and :°C:.

The major features of the "subroutine" help file
HELP.MNU are:

- imadge text is used to describe each option.

- alwavs returns control to <LFILE>, the last-used
file name.

DPL IANGUAGE DEFINIT IONS

Directives

All directives must be preceded by a doliar sign "$".
Only one directive allowed per line. A directive may
only be preceded on a line by a label or a series of
tabs or svaces.

Labels

All labels must be prefixed and suffized by a
colon":". Only one label allowed per iine. A label
must be the first non-tab/blank character on a line.
A label may be on a line by itself. Label names are
limited to six characters (not includina colons) can-
not have imbedded blanks and should be unicue.

Comments

Comment lines must have an exclamation peint it a5
the FIRST character of the line.

Image Text
Any line without "1" as the first character OSSN o T
":" as the first non-blank/tab character will be
printed directly to the screen. (This does not applv
if the 1lines are written in a tabie data definition
reaion.)

Permanent Symbols

Any svmbol enclosed in angle brackets refers to a

DPL
permanent symbol name. Permanent svmbols may be $SET
by the user but not S$DELETEd. Permanent symbols
include:
<DAT E> Current date ddd-mmm-yyy
<T IME> Current time hh:mm
<“c> Swstem abort interrupt label
<ERROR> Default error trao label
<UP> General interrupt lable
< DOW‘I\]> " " n
<}1EL P > " " "
< SOFA B O> n n n
<ALT ENI‘ S L " "
<MFILE> Master file specification
<CFILE> Current file
<LFILE> " Last used file
<IFILE> Tree file
<NFILE> Next~to-use file
<T ERM> Terminal type identifier

1=VvI52, 2=Vrl00, 3=HAZELTINE, 4=ADM
<USER> Username
<LINE> Terminal line number
<INDEX> SLOOKUP returned pointer value
<PROJ> Project number of user
<PROG> Proarammer number of user

User Defined Symbols

Any six character string which does not start with "$"

or ":" or contain a "+" or """ can be used as a user
symbol. Each symbol can "store" up to 80 characters
of data.

Symbol Concatenation Character

A "+" may be used to delimit any two user symbols in a
strina expression.

Relational Operators

The followina relational test operators are permitted:

Test .Operator
Equal to EQ or ==
Not Equal to NE /=
Greater than GI >>
Less than LT <<
Greater than or equal to GE >=
Less than or equal to LE <=

Syntax Item Definitions

NOr'E:
tors.

Tabs or spaces are the only valid item separa-

Primitives:

svmbol - either a user defined (or to be defined)
svmbol name up to six characters in
lenath e.g. FILE .
- or a permanent symbol name e.g. <DATE>
tablename -~ a user defined (or to be defined) svmbol

name to be associated

with a lookup
data table e.g. DEVIBL

label - a user defined svmbol name associated
with a command in the file. e.g. :LOOP:

txt_string - any characters contained by double quotes
e.g. "this is a text string"

b4 3% - inteaer screen co-ordinates- too LH
corner is origin = 1,1 e.q, 10 20

str_len ~ integer max lenath of an $ACCEPT string.

Derivatives:

str_exp - a string expression consisting of
combinations of symbols and txt_strinas.

default ~ an initial str_exp value for an
SACCEPT symbol.

relop - a str_exp containing a relational
operator.

location - a str_exp containing a label definition.

else_label - a str_exp containina a label definition
which will be used if the logical test
is FALSE.

table - a str_exp containing a table definition.

seconds - a str_exp representina an inteager number

of seconds.

Directive Svntax

$ACCEPT x y str_len default symbol {flaa}

Display the default string at column x. row y and
aliow editing of the default string up to a maximum of
str_len characters. Will optionally accept an extra
flag argument "silent" to prevent user input being
echoed. Return the edited string as a symbol when
either of the following terminators is entered.
<carriage~return> - normal return, continue execution
on next line of command file.
branch to interrupt label stored
in the permanent symbol <"C>

else abort if no label svecified.
branch to interrupt label <UP> if
present, else ignore and continue
$ACCEPT command.

<system-abor t> -

<up-arrow> =

<down-arro:> - branch to interrupt label <DOWN>
etc

<help> - branch to interrupt label <HELP>
etc

<soft-abort> - branch to interrupt label <SOFABO>
etc

<alternate-—enter> branclh: to interrupt izbel <ALLRNI>
etc

e.g., SACLEFPR 10 10 14 "DY1:URED.DATY TRPUTD

SACCEPT 10 10 14 DEFAULT I1LPUL

SACCEPT 10 10 14 DEFAULT DEFAULT

SDRANCH_ON INPUT x v symbol

Position the screen cursor at (x y) and wait for input
of a sinale character. Store the single character in
symbol and then execute a $GOTO symbol. Primary use

is for menu selection. If the symbol contents do not
correspond to a label in the file a "beep" is issued
and the S$BRANCH is re-executed. All normal $ACCEPT
terminators still overate.
e.g. S$BRANCH 10 10 OPTION

SCLEAR {x y!

Clear from position x y to end of screen.
SIS (Top line of
licence details).
e.g. ' SCLEAR

$CLEAR 1 15

Default x y
screen is reserved for DPL

$DCL str_exp

Pass the nominated str_exp to the system monitor and
exit from DPL. Before exiting DPL an implicit $SAVE
will be executed and the chain-back command "RUN/S
DPL:DPL /D" is inserted into the chain buffer to
enable a return to the current file and line number
with all svmbols intact. To return to a different
file use $SET <NFILE> "newfile" prior to $DCL. Any
number of $DCL commands may be specified.
e.g. $DCL "RUN "PROGRA".BAS"

SDCL "@"DEVICE"EDIT "INPUT" "ARGL" "ARG2 "ARG3"

SDELETE symbol

Remove the nominated symbol from the user symbol table
and make its data space available for other symbols.
Permanent svmbols cannot be deleted.

e.g. SDELETE INPUT

$DISPLAY x y str_exp

Display the contents of the str_exp starting at column
X. IOW Y.
e.g. $DISPLAY 10 10 PROMPT<DATE>

$DISPLAY 10 10 "SELECT"

SDISPLAY 10 10 “"SELECT "CHOICE+FILE" FOR"ACT ION

$DEF_TABLE table

Defines the start of a data table definition. All
followina lines will be treated as literal data if the
first non-blank/tab character is not a "$". The table
data should be terminated by an $END. TABLE directive.
e.d. $DEF_TABLE DEVICE

SEND. TABLE

-Defines the end of any previouslv defined table.
e.qg. $ENDLTABLE

SEXIT

Terminates processinag and returns to DCL. Also, if
used to terminate a strina of $DCL commands it pre-
vents the inclusion of the chain-back command "RUN /S
DPL:DPL /D" into the DCL command string. It also pre-
vents creation of DPL??7.DAT save file durina $DCL
which means current DPL line number will not be saved.
e.g. $EXIT

$GOSUB label

Transfers execution to a subroutine of DPL commands
within the current file. There are up to ten levels
of nesting allowed and execution beains at the label
specified and after a $RETURN will resume at the line
followina the $GOSUB which called it.

e.g. $GOSUB INPUT

$GOI'0 location

Transfer execution to the nominated location. if loca-
tion does not substitute to a label in the file.
assume it's a file specification.
e.g $GOr0O LABEL

$GOro "LABELL1"

$GOr'0 "LABEL"NUM

:3GOr0 "DY0:MENU1.MNU"

$IF ‘str_exp relop str_exp else label

Perform the nominated relaticnal test between the two
str_exp and if the result is TRUE continue execution
on the next command line. If the result is FALSE per-
form a’$GOr0 else_label.
e.g $IF ANS EQ "YES" NO

$IF FILE NE OUIPUT'".DAT" OUIPUT

$INPUT x y symbol {flaa}-

Perform same function as $BRANCH but simplv store the
sinale character input in symbol. Will optionallv
accept an extra flaao Opargument "silent" to prevent
user input being echoed. i
e.g. S$INPUI 10 10 OPTION

SLOOKUP str_exp table else label

Perform a lookup of str exp in the nominated data
table and if successful continue execution on the next
command line. The permanent symbol <INDEX> contains
the table entry position where the lookup was success-
ful. If the loockup fails., execution is transferred to
else_label
e.g. SLOOKUP DEV! DEVICE NODEV
SLOOKUP "PDO:"DEVS "NODEV"
SLOCKUP "PDl:"+INPUT".DAT"

FILES NOGOOD

$RET URN

Marks the end of a subroutine section of DPL commands.
Execution control is returned to the command line
immediatelv following the $GOSUB command which invoked
the subroutine. "'If no previous $GOSUB the command is
ignored.

e.g. SRETURN

$SSAVE

Indicates that all user symbol data will be retained
after execution 1is passed to another file. "If not
specified all user symbols are cleared. Only applies
to the current file.

e.g. S$SAVE

$SET symbol str_exr

Store the contents of the
nominated svmbol.
e.g. $SEI DEFAULT "PDO:INPUT .TXT"
$SET <ERROR> "ERRLAB"
$SFT <HELP> "HELP"
SSET OFILE NAME+CODE".DAT"

string expression as the

STESTFILE. str_exp else label

Determine if str_exp exists as a file in the system
and if it does, continue execution on the next line.
If it does not exist, $GOTO else label.
€.g. STESTFILE "PDO:MYFILE.TXI" NOWAY

STESTFILE OUTPUT".TXT" NOPE

$TESTLABEL label else label

Checks to see if a label exists in the current file.
branches to else label if it doesn't.
e.g. S$TESTLABEL INPUI NOLABL

SWAIT seconds

Suspend execution of the file for the integer number
of seconds specified in the string expression seconds.
e.g. SWAIT "10"

SWAIT PAUSE

CONCLUSION

DPL is an easv-to-use yet powerful command lanauaae in
the style of IND and DCL designed for commercial
apolications under the TSX-Plus. RI'-11 and even VMS
operating systems. The lanauaage is under continued
development with planned extensions to include a PARSE
directive, extended GOrO capabilities, enhanced video
controls. numeric symbols and a aeneral file 1I/0
interface.

REFERENCES

1. B. A. Harper,
"SPECS: A Menu Control System For RT-11",
Proc.-Diaital Equipment Computer Users Society,
Melbourne, Australia, Julv 1982,

