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Numerical Modelling of Tropical Cyclone Storm Surge

R. J. SOBEY, M.IL.E. Aust., B. A. HARPER and G. M. MITCHELL

SUMMARY Details are presented of a general numerical hydrodynamic model for the generation and propa-
gation of tropical cyclone or hurricane storm surge. The model, known as SURGE, solves the two-dimensional
depth-integrated form of the Long Wave Equations using an explicit finite difference procedure, with
tropical cyclone surface wind and pressure forcing estimated from an adaption of available models based -on
U.S. hurricanes. Variations in tropical cyclone parameters as well as the physical characteristics of a
coastal location such as bathymetry and details of capes, bays, reefs and islands are accommodated by the
model. The accuracy and stability of the numerical solution have been confirmed by a comprehensive wave
deformation analysis including quasi-non-linear effects and the open boundary problem has been overcome by
the use of a Bathystrophic Storm Tide approximation to boundary water levels. A detailed sensitivity
analysis has identified the principal surge generating parameters and the model has been checked against
an historical tropical cyclone storm surge. SURGE has been used extensively in the northern Australian
region and examples are presented.

il INTRODUCTION coastal surge profiles at any time and water level
and flow velocity time histories anywhere within

The tropical cyclone or hurricane storm surge is a the model area. SURGE is a comprehensive software

meteorologically forced long wave motion resulting system and is fully documented in the form of a

in a sustained superelevation of the sea surface, user's guide (4). Particular attention has been

at least for a few hours, above that produced by given to the quite considerable problems of input

the normal periodic astronomical tide. It is the data format and especially output data selection

result of the combined action on the underlying and presentation.

water body of the extreme atmospheric pressure

gradients and wind shear stresses generated by a While numerical modelling of long wave propagation

mature tropical cyclone. The region of surge is not new, there are a number of unique aspects of

intensification can extend over a substantial the storm surge problem. In particular, the complex

length of coastline (of order 200 km) and the character and geophysical extent of the meteorolog-

development and impact of the surge wave at a par- ical forcing, the specification of suitable open

ticular site is sensitive to a number of meteorol- boundary conditions and the satisfactory resolution

ogical and topographical factors. Briefly these of the storm structure in discretised form all

are the intensity and scale of the tropical cyclone, require special attention (11).
the speed and track of the storm, the underwater

and overbank terrain, offshore reefs and islands, 2 MATHEMATICAL FORMULATION

local coastal features (bays, headlands, estuaries)

and the astronomical tide. Historically, storm The response of a homogeneous sea to the meteorolog-

tides have resulted in considerable damage to ex- ical forcing of a tropical cyclone is described by

posed coastlines, the flooding of low lying land the full Navier-Stokes Equations for a homogeneous,

and loss of life. A potentially critical situation incompressible fluid. Direct numerical solutions

arises when the total sustained water level (surge of these equations are as yet not feasible and a

+ tide) exceeds the highest astronomical tide three-dimensional solution would only appear necess-

(HAT) level. ary where fluid density difference and/or the
vertical flow structure may be important. An

In response to the need for reliable storm surge adequate description of long wave propagation

estimates in northern Australia for the design of (astronomical tides and storm surge) can be had from

coastal structures and for the protection of a two-dimensional vertically integrated form of the

coastal communities, a numerical hydrodynamic model Reynolds Equations - the Long Wave Equations (16).

was developed within the Department of Civil and These equations represent the conservation of mass

Systems Engineering at James Cook University. The and the conservation of momentum in horizontal

model, known as SURGE, is a general numerical directions x and y and time t:

hydrodynamic model for the generation and propa-

gation of tropical cyclone storm surge and can be gﬂ_+ §E,+ v 0 (1

applied to most coastal regions (11). It includes ot 9X dy

the effects of undersea bathymetry, offshore

islands, reefs and other coastal features, as well §E.+ Ji{—gi + ji{lﬂia - £V

as the flooding of low lying land. Tropical ot 9xmn-d dy n-d

cyclone size, intensity and track can be varied an n-d 9pg 1

continuously throughout a simulation to produce = 'g(”'d)gg" 7;;J7;:'+ EE{TSX_Tbx) (2)

water flow patterns, contours of water level,

3V . 3 .uv R
e Yl S et v U
(Paper C1344 submitted to The Institution of 2 on n-d,oPs il
Engineers, Australia on 16 June 1981). 3 'g(”'d)ﬁy 2 (Pw) 3y BE{TSV-Tby) (3)
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The x-y datum plane is located at the mean water A qlu

level with the z axis directed vertically upwards. T o =p - 4
The water surface elevation with respect to datum bx 8‘ w (n-d)

is n(x,y,t), the sea bed is d(x,y) with respect to where Q = (U%?+V2)? is the total flow per unit width
datum, U and V are depth-integrated flows per unit and )\ is the Darcy-Weisbach friction factor,

width, f is the Coriolis parameter and p, is the assumed depth-dependent according to the Colebrook-
mass density of sea water. The forcing influence White formula for a hydraulically rough boundary

of the tropical cyclone is represented through the layer. Modified values of A are adopted near reefs
surface wind shear stress vector T4(X,y,t), and for overbank flooding, the details being pre-
resolved into components Tgy and Ty, and the x and sented below.

y gradients of the M.S.L. atmospheric pressure

p_(x,y,t). The effect of bottom stress is repres- At this stage the equations are sometimes linear-
efited through the seabed shear stress vector ised, neglecting the (normally small) convective
Tp(X,y,t), resolved into components Ty, and Ty, accelerations. In SURGE all terms have been

such that, for example, in blue water regions: retained as they present no particular numerical

TABLE I

SURGE COMPUTATIONAL MOLECULES AND FINITE DIFFERENCE EQUATIONS
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problems and in some cases the commonly neglected
terms (such as Coriolis and convective acceler-
ations) can even be relatively important (6,11).
A SURGE input option however does allow the con-
vective terms to be omitted (4).

3 NUMERICAL SOLUTION

The flow field, coastal details, offshore and over-
bank bathymetry and coral reefs are represented on
a square grid of unit dimension As and discrete
values of the variables are specified on a space
(x,y) and time (t) staggered computational grid,
whose node points are defined as (iAx, jAy, nAt).
Water surface elevation H (or n), bed elevation D
(or d) with respect to M.S.L. and barometric head

B = pg/pyg are located at points (i,j,n), depth-
integrated flow U and the surface wind shear stress
term WX = Tgy/py at (i+},j,n+%s) and the depth-
integrated flow V and the surface wind shear stress
term WY = Tsy/pw at (i,j+%,n+)s) points.

Numerical integration of the partial differential
Equations 1,2 and 3 is accomplished by an explicit
"leapfrog' procedure similar to that used in the
numerical simulation of storm tides in Galveston
Bay, Texas, by Reid and Bodine (8). The computat-
ional molecules and explicit finite difference
equations are listed in Table 1, the continuity
equation being centred at (i,j,n+’), the x momentum
equation at (i+)%,j,n) and the y momentum equation at
(i,j+%,n). In a number of special cases associated
with boundary or internal (reef, weir, island)
constraints, the complete finite difference
Equations b and c of Table 1 cannot be implemented
and suitably reduced forms (11) are adopted in such
circumstances. Successive application of the x and
y momentum equations and the continuity equation,
together with appropriate boundary conditions
advance the solution by one simulation time step
At

4 STABILITY AND WAVE DEFORMATION

As SURGE is based on explicit finite difference
equations, numerical stability for all wave numbers
15 ensurﬁd only when the Courant number Cr =
[g(n-d)]3At/As coes not exceed unity. Conpliance
with this equation, however, does not necessarily
guarantee the accuracy of the solution and a
broader analysis of the model behaviour is necessary
to fully examine the numerical distortion of the
physical surge wave. Some measure of this distor-
tion can be had from a comparison of the numerical
and analytical solutions of the equations in the
time domain using the complex propagation factor

of Leendertse (7). This method allows evaluation
of the wave-number-dependent amplitude and phase
distortions introduced by the numerical solution.

Assuming the non-linear interactions to be weak, as
is generally the case for the Long Wave Equations,
an evaluation of the wave deformation character-
istics of the solution can be obtained from a quasi-
linear approximation to the finite difference
equations (11). The results show that the finite
difference equations are appropriate discrete
approximations to the partial differential equations
across the complete wave number spectrum. For
typical applications with Cr=1.0 and L/As of order
25, negligible phase and amplitude distortion can
be ‘expecteds

5 BOUNDARY CONDITIONS
The mathematical description of the computational

field is completed by the specification of suitable
boundary conditions, which for SURGE can be divided
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into a number of broad categories. Consistent with
the staggered finite difference representation of
the flow field, boundary conditions for either U or
V (i.e. flow) situations take effect at spatial
locations midway between nodes. For H (i.e. water
level) situations the conditions require some inter-
pretation in terms of the general finite difference
equations; two or more conditions could apply at the
one location and in many cases the spatial coverage
of the general schemes needs to be restricted in the
vicinity of a constraint. All this information is
supplied to the model by the systematic specification
of over fifty different flag conditions (4).

(a) Coastal Boundaries. These represent the
simplest boundary conditions, stipulating vanishing
normal transport across the coast at sea nodes
adjacent to land nodes

+k L
2+é,j =0 or v’.""?1 =0 (5)

e
Various combinations of these component conditions,
together with the normal case of uninterrupted flow,
allow the representation of any area of coastline.

e 0S w1

Figure 1 Schematic representation of

reef boundary condition

(b) Reefs and Low Barriers. In terms of long wave
propagation it is appropriate to represent the
presence of reefs or sand banks within the flow
field as a submerged broad-crested weir, an overflow
broad-crested weir, or a total flow barrier. The
exact representation depends upon the crest elevation
of the reef z.,..q¢ With respect to the instantaneous
water levels, Hy on the upstream side and Hy on the
downstream side of the reef. This is shown schem-
atically in Figure 1 where q is the resulting water
discharge (i.e. U or V, depending on reef orientat-
ion) across the reef. In the vicinity of reefs it
is convenient to omit the smaller convective and
Coriolis acceleration terms from the momentum
equations. The influence of the reef is then rep-
resented by an effective Darcy-Weisbach friction
factor (12) based on the normal submerged and over-
flow broad-crested weir equations through an
assumption of locally uniform flow:

| lulu )

Tox = 8 Pw T-d)2

a3

T%L%WQ%T_ZE for submerged weir
18W;

16(n-d)°

m for overflow weir
2 2
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Cies submerged weir discharge coefficient 2

AW, = submerged weir bead = H(Hy + Hd? A

C, = overflow weir discharge coefficient (0.5)
and AW, = overflow weir head = H; - Zcrest

For the case of z. .yt > Hy or Hy (total flow
barrier), the conventional coastal boundary (a)
applies. The continuity equation remains unchanged
for all cases. Offshore reefs are mostly subgrid
effects as their spatial scale is small compared
with As. 1In such cases the seabed levels (Di,')
should be selected as if the reefs did not exist.
Such reef conditions have been used extensively for
computations in the vicinity of the Great Barrier
Reef.

(¢) Coastal Flooding. The coastal flooding algo-
rithm in SURGE represents the wetting and drying of
low lying land through a two-dimensional cascade of
broad-crested weirs and local storages (12). It is
consistent in spirit with the representation of off-
shore reefs in (b). Each flood element is con-
sidered centred on a grid or H point and has hori-
zontal dimensions As by As, with sides passing
through the U and V locations at half-grid points.
Bed elevation Dj j is as usual specified at the H
point while broad-crested weirs with elevation Di,
*Ze|i along all four sides totally surround eadL
flood %ﬁement. Adjacent elements have potentially
different bed levels and crest elevations and at
matching sides the higher of the two crest levels
is considered operative in determining element ex-
change flows across that side, as illustrated in
Figure 2a; this procedure was also followed for (b).
The continuity equation is again unchanged, except
that each element is constrained to empty only to
the element crest level to characterise local
pondage.

e s ——f

107° 107 {% 1072 1072 107!

(b) Broad-Crested Weir Friction Diagram.

Figure 2 Coastal flooding boundary condition

Frictional resistance to overbank flow is repres-
ented through the weir height z¢ relative to local
bed level and through the spacing of these weirs As.
Given a grid scale, the choice of appropriate z.,
in the absence of calibration data, can reasonably
be based on an engineering estimate of the equival-
ent weir behaviour of say urban housing or mangrove
swamps. A non-dimensional weir friction diagram,
Figure 2b, has been prepared to assist in the
estimation and evaluation of overbank resistance.
It is based on the A estimates of Equation 6 and
shows the dependence of the friction factor on the
dimensionless relative weir height z./y,, the
dimensionless normal depth y,/As and the slope of
the uniform flow energy grade line S, y_ being the
normal depth. =

(d) Open Sea Boundaries. While open boundary
conditions for astronomical tide propagation are
quite straightforward and require only the specifi-
cation of water surface histories at these locations
for satisfactory representation, meteorological
tides are generated by local surface forces. For a
tropical cyclone the spatial extent of the forcing
approaches 1000 km, although the region of peak
positive and negative surges has a spatial scale of
the order of the radius of maximum winds (typically
30 km). In such a case meteorological forcing out-
side the computational field can only be represented
by the open boundary condition. . Ideally the open
boundaries would be insignificant. However, the
storage and speed limitations of present time-shared
computer systems preclude the adoption of a compu-
tational field that has linear dimensions of the
order of 1000 km and simultaneously reproduces
details on the scale of the radius of maximum winds.
A practical compromise to this conflict of scales
has been incorporated in SURGE by effectively in-
cluding the forcing influence outside the computat-
ional field in the open boundary conditions.

Three separate forms of open boundary conditions
are available in SURGE (3,11):

(1) Pressure Surge Condition (H = AB), where
open boundary water levels are set equal to the
pressure surge, the head of water equivalent to the
local atmospheric pressure deficit, i.e.

n n
H 5= @upgli 5702 ™
This condition is regarded as only a first approxi-
mation to the actual water levels along an open
boundary as it does not include the effects of the
wind tide. The pressure surge condition is the
default condition and is used as an initial value
in condition (ii) below.

@) Bathystrophic Storm Tide (B.S.T.) Approxi-
mation, where open boundary water levels are set
equal to the local bathystrophic storm tide, i.e.
the quasi-steady profile described, for example by

Lﬂ:ﬂl.égi.+ Tsx (8)

an
0= - i
gn-d)z5 T

w

when the open boundary is in the x direction and
intersects the coastline.

From a physical viewpoint the bathystrophic tide
condition provides a reasonably realistic boundary
condition. It involves a lowest order momentum
balance along the open boundary to include the
forcing influence of the tropical cyclone outside
the boundary. Water levels along the open boundary
can rise and fall in response to the intensity and
position of the tropical cyclone as shown in Figure
3. Such a boundary condition enables optimal use
of the grid coverage, realistic water levels and

Civil Engineering Transactions, 1982
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cyclone
position

setup

- g3

Figure 3 Concept of Bathystrophic Storm Tide open boundary condition

flow patterns being obtained in close proximity to
the boundaries. Detailed discussions are given
elsewhere (3,11).

(iii) Time Dependent Water Level Inputs, where
open boundary water levels are set equal to supplied
water levels (e.g. tidal input, hydrographs),

My o=

1)J
This form of open boundary condition can also be
used in conjunction with (i) and (ii) above,
although no interaction between the two inputs (viz.
meteorological and astronomical) is assumed. The
appropriate meteorological forcing, pressure surge
or B.S.T., is first applied with water levels at
M.S.L., and the time dependent water levels are then
added. Additionally this condition allows a 'dual
model' approach, in which water levels derived from
a large scale model are used later as open boundary
inputs to a smaller scale, detailed model of a par-
ticular section of coast.

h(t) %

6 TROPICAL CYCLONE FORCING

The aerodynamics of the tropical cyclone and the
hydrodynamics of the underlying water body are
coupled by the atmospheric pressure pg and wind
shear stress Tg at the air-sea interface. Their
estimation throughout the flow field during the
passage of a tropical cyclone follows from the
adoption of a suitable model of the near-surface
meteorological structure of the storm. The model
developed initially by Graham and Nunn (2,15) under
the National Hurricane Research Project (NHRP) of
the former U.S. Weather Bureau forms the basis of
the tropical cyclone sub-model in SURGE. No claim
is made that this model is entirely satisfactory;
in fact our knowledge of tropical cyclone wind
fields is far from complete, especially in
Australia. It has been adopted in the absence of a
more suitable alternative.

Many of the highly empirical aspects of the original
NHRP model, such as rate of filling over land and
the reduction of over-land wind speeds, have been

omitted in favour of representing the major
features of the tropical cyclone. In particular

The Institution of Engineers, Australia
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the radial wind and pressure profiles, the vari-
ation of the radial inflow angle and the asymmetry
of the wind field are included and expressed in
terms of the four parameters commonly assumed to
characterise a tropical cyclone:

(1) Central pressure p, at M.S.L.

(i1) Maximum sustained wind V;, at a height of
10 m above M.S.L.

(iii) Radius of maximum winds R.

(iv) Speed Vgy and direction Opy of storm

forward movement.
SURGE allows all four parameters to be varied con-
tinuously to represent changes in storm intensity
and track. Details may be found in Ref.11. Radial
profiles of near-surface wind and M.S.L. atmos-
pheric pressure are sketched in Figure 4a and
Figure 4b shows a typical isovel and wind vector
pattern for a moving model storm. The over-water
wind speed Wy, at height 10 m above M.S.L. and the
resulting shear stress T. on the water surface are
assumed to be related as

T i =iC 70 P, Wy o2 (10)

s
where Cio is a non-dimensional surface friction or
drag coefficient. Approximate relations for Cig
over the range of wind speeds for oceanic appli-
cations according to wu (17) are incorporated in
SURGE.

i MODEL VERIFICATION AND SENSITIVITY TESTING

Initial verification of the model hydrodynamics was
accomplished by comparison of a numerical prediction
with a known analytical solution for wind setup on

a rectangular lake under constant wind forcing.

The agreement was almost exact. Since analytical
solutions more closely related to open coast
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Figure 5 Model representation of Townsville
region and track during Tropical
Cyclone ALTHEA

tropical cyclone storm surge are not available, an
alternative approach to detailed verification was
adopted involving comparison with a documented
record of an historical tropical cyclone storm surge
(219"

The tropical cyclone ALTHEA storm surge near Towns-
ville in December 1971 is probably the best docu-
mented storm surge to occur in Australia. Water
level records from four automatic tide gauges
(Mourilyan, Lucinda, Townsville and Bowen) plus
post-cyclone debris level surveys enabled an order-
of-magnitude reconstruction of the surge profile
development along the coast. No flow velocity data
was available, nor was there any record of water
levels at other than coastal locations. The Bureau
of Meteorology (1), with the aid of shore-based
radar, traced the path of ALTHEA as it approached
and crossed the continental shelf and estimated the
meteorological parameters. The central pressure
fell to 952 mb and the radius to maximum winds was
typically 35 km. The storm crossed the coast approx-
imately 45 km north of Townsville and registered a
peak surge of 2.78 m above predicted tide level at
Townsville Harbour.

The coastal region
Bowen in the south
represented on a 5
points as shown in

from Innisfail in the north to
and up to 260 km offshore was
n mile grid system of 30 by 40
Figure 5 which includes a

reconstructed path of ALTHEA. The coastline is
shown as a series of straightline barriers while
the Great Barrier Reef is indicated by a series of
broken line barriers that maintain the recognised
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Figure 6 SURGE hindcast of Tropical
Cyclone ALTHEA
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shipping passages. Due to an almost complete lack
of information on the offshore astronomical tide,
the simultaneous propagation of tide and surge
could not be considered and the hindcast is com-
pared to the deviation of water levels away from
predicted astronomical tide (and ignoring nonlinear
interactions). Figures 6a and b show the results
of SURGE simulation compared with the storm surge
hydrograph recorded at Townsville Harbour and also
with less reliable data available on maximum
coastal water levels. The results show good agree-
ment with this limited historical record, even at
this coarse 5 n mile resolution level. A more
thorough evaluation will only be possible when
spatially comprehensive time histories of sea sur-
face development of the type promised by the
SEASAT satellite programme become available.

Figure 7a shows part of the model flow field shortly
after the storm has crossed the line of barrier
reefs and the strong currents generated along the
coastline and through the numerous reef passages.
Figure 7b shows contours of water level above
M.S.L. at the time of storm landfall.

In addition to the comparison with an historical
record, a comprehensive sensitivity analysis was
undertaken to evaluate the model performance under
various conditions (6,11) and to define the likely
envelope of response. In particular, testing of
various dynamic open boundary situations was under-
taken together with consideration of bed friction
specifications, bathymetry effects, coastal forms
and initialization. A broad range of tropical
cyclone parameters, including track, was also
examined and highlighted the need for adequate
resolution of the storm wind and pressure structure.
An R/As ratio of at least 4 was shown to be necess-
ary for an accurate representation of the structure
of the storm forcing.

8 MODEL APPLICATIONS

SURGE has been used extensively for the study of
tropical cyclone storm surge hazard in northern
Australia. In particular a comprehensive analysis
was undertaken for the Beach Protection Authority,
Brisbane, at ten separate sites along the Queens-
land coast and covering over 2000 km of coastline
(5,11). At each of the sites three tropical
cyclones at each of three approach directions were
modelled, based on a statistical analysis of histor-
ical tropical cyclone records, and their effect on
coastal locations was examined in detail. This
extensive study required the modelling of a wide
range of coastal features from the shallow waters of
the Gulf of Carpentaria, through the Great Barrier
Reef dominated Coral Sea coast to the comparatively
narrow and plunging continental shelf along Queens-
land's Gold Coast region. Other study areas in
northern Australia include Mermaid Sound in Western
Australia (13), an area subject to the most severe
tropical cyclones in Australia, and even more
detailed investigations of estuarine storm surge
penetration at Weipa on Cape York Peninsula (14)
and Trinity Inlet at Cairns (12). The latter two
studies included the use of a one-dimensional hydro-
dynamic model ESTFLO (9) which was interfaced with
SURGE. Figure 8 shows the Trinity Inlet model
structure where a three-pass procedure was adopted,
involving two successive grid scale reductions by
factors of six and appropriate truncation of the
computational field at each pass. This structure
was necessary to include the area of significant
meteorological forcing and still reproduce overbank
flooding within Trinity Inlet and in a loop around
Admirality Island. This formulation was necessary
to achieve a realistic representation of the flow
pattern between the deeper channels which are the
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Figure 7 Typical SURGE output for ALTHEA hindcast

major vehicle for surge penetration, and the exten-
sive mangrove areas. Figure 9 shows a typical time
sequence of surge penetration and overbank flooding
within the C grid region. Heights are in cm above

M.S.L. datum.
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Figure 8 Trinity Inlet model structure
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Water levels over C grid one hour before storm landfall

Figure 9 Overbank flooding in Trinity Inlet
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Water levels over C grid at storm landfall

Figure 9 (continued) Overbank flooding in Trinity Inlet
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